dinov2-base-ODIR-5K / README.md
Isaskar's picture
End of training
27487c3 verified
metadata
license: apache-2.0
base_model: facebook/dinov2-base
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
model-index:
  - name: dinov2-base-ODIR-5K
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7188755020080321
          - name: F1
            type: f1
            value: 0.6332945285215367

dinov2-base-ODIR-5K

This model is a fine-tuned version of facebook/dinov2-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5700
  • Accuracy: 0.7189
  • F1: 0.6333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6374 0.9858 52 0.6186 0.6778 0.2031
0.5789 1.9905 105 0.5661 0.7153 0.3794
0.5368 2.9953 158 0.5334 0.7407 0.5756
0.4162 4.0 211 0.5747 0.6983 0.6198
0.3679 4.9858 263 0.5700 0.7189 0.6333
0.2431 5.9147 312 0.6111 0.7564 0.6331

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1