File size: 1,936 Bytes
1171a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a84cbbc
 
1171a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe2ad3
 
 
1171a9c
 
 
6208e96
1171a9c
 
 
 
 
a84cbbc
 
 
 
 
 
 
 
 
 
1171a9c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: bert-base-uncased
model-index:
- name: BERT-SA-LORA
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BERT-SA-LORA

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4183
- Accuracy: 0.868

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 125  | 0.6192          | 0.682    |
| No log        | 2.0   | 250  | 0.4579          | 0.79     |
| No log        | 3.0   | 375  | 0.3820          | 0.844    |
| 0.4923        | 4.0   | 500  | 0.3872          | 0.865    |
| 0.4923        | 5.0   | 625  | 0.3659          | 0.862    |
| 0.4923        | 6.0   | 750  | 0.4615          | 0.853    |
| 0.4923        | 7.0   | 875  | 0.4444          | 0.86     |
| 0.2691        | 8.0   | 1000 | 0.4148          | 0.871    |
| 0.2691        | 9.0   | 1125 | 0.4089          | 0.87     |
| 0.2691        | 10.0  | 1250 | 0.4183          | 0.868    |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2