File size: 1,936 Bytes
1171a9c a84cbbc 1171a9c 5fe2ad3 1171a9c 6208e96 1171a9c a84cbbc 1171a9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: bert-base-uncased
model-index:
- name: BERT-SA-LORA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT-SA-LORA
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4183
- Accuracy: 0.868
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 125 | 0.6192 | 0.682 |
| No log | 2.0 | 250 | 0.4579 | 0.79 |
| No log | 3.0 | 375 | 0.3820 | 0.844 |
| 0.4923 | 4.0 | 500 | 0.3872 | 0.865 |
| 0.4923 | 5.0 | 625 | 0.3659 | 0.862 |
| 0.4923 | 6.0 | 750 | 0.4615 | 0.853 |
| 0.4923 | 7.0 | 875 | 0.4444 | 0.86 |
| 0.2691 | 8.0 | 1000 | 0.4148 | 0.871 |
| 0.2691 | 9.0 | 1125 | 0.4089 | 0.87 |
| 0.2691 | 10.0 | 1250 | 0.4183 | 0.868 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |