English
File size: 12,761 Bytes
1960aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: tryv3_16epochs
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE RTE
      type: glue
      config: rte
      split: validation
      args: rte
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6498194945848376
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tryv3_16epochs

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0256
- Accuracy: 0.6498

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |                                                                                                                                                                                                                                                                             |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| No log        | 1.0   | 78   | 0.6907          | 0.5126   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| No log        | 1.0   | 78   | 0.6698          | 0.6318   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| No log        | 2.0   | 156  | 0.7006          | 0.5884   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| No log        | 2.0   | 156  | 0.6683          | 0.6715   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| No log        | 3.0   | 234  | 0.7282          | 0.5957   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| No log        | 3.0   | 234  | 0.7189          | 0.7004   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| No log        | 4.0   | 312  | 0.7194          | 0.6534   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| No log        | 4.0   | 312  | 0.7805          | 0.7004   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| No log        | 5.0   | 390  | 0.8791          | 0.6354   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| No log        | 5.0   | 390  | 0.8328          | 0.7076   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| No log        | 6.0   | 468  | 1.0037          | 0.6173   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| No log        | 6.0   | 468  | 0.8701          | 0.6895   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371        | 7.0   | 546  | 0.9121          | 0.6245   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| 0.5371        | 7.0   | 546  | 0.8220          | 0.6859   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371        | 8.0   | 624  | 1.0092          | 0.6245   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| 0.5371        | 8.0   | 624  | 0.8341          | 0.6823   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371        | 9.0   | 702  | 0.9687          | 0.6426   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| 0.5371        | 9.0   | 702  | 0.8538          | 0.6643   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371        | 10.0  | 780  | 1.0111          | 0.6354   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| 0.5371        | 10.0  | 780  | 0.8117          | 0.6968   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371        | 11.0  | 858  | 0.9616          | 0.6498   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| 0.5371        | 11.0  | 858  | 0.8113          | 0.6895   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371        | 12.0  | 936  | 0.9934          | 0.6462   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| 0.5371        | 12.0  | 936  | 0.8179          | 0.6895   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.1174        | 13.0  | 1014 | 1.0097          | 0.6318   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| 0.1174        | 13.0  | 1014 | 0.8191          | 0.7004   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.1174        | 14.0  | 1092 | 1.0019          | 0.6462   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| 0.1174        | 14.0  | 1092 | 0.8157          | 0.7004   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.1174        | 15.0  | 1170 | 1.0127          | 0.6318   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| 0.1174        | 15.0  | 1170 | 0.8178          | 0.6895   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.1174        | 16.0  | 1248 | 1.0095          | 0.6462   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])             |
| 0.1174        | 16.0  | 1248 | 0.8178          | 0.6895   | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |


### Framework versions

- Transformers 4.29.1
- Pytorch 1.12.1
- Datasets 2.13.1
- Tokenizers 0.13.3