File size: 12,761 Bytes
1960aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: tryv3_16epochs
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE RTE
type: glue
config: rte
split: validation
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.6498194945848376
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tryv3_16epochs
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0256
- Accuracy: 0.6498
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| No log | 1.0 | 78 | 0.6907 | 0.5126 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| No log | 1.0 | 78 | 0.6698 | 0.6318 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| No log | 2.0 | 156 | 0.7006 | 0.5884 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| No log | 2.0 | 156 | 0.6683 | 0.6715 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| No log | 3.0 | 234 | 0.7282 | 0.5957 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| No log | 3.0 | 234 | 0.7189 | 0.7004 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| No log | 4.0 | 312 | 0.7194 | 0.6534 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| No log | 4.0 | 312 | 0.7805 | 0.7004 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| No log | 5.0 | 390 | 0.8791 | 0.6354 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| No log | 5.0 | 390 | 0.8328 | 0.7076 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| No log | 6.0 | 468 | 1.0037 | 0.6173 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| No log | 6.0 | 468 | 0.8701 | 0.6895 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371 | 7.0 | 546 | 0.9121 | 0.6245 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| 0.5371 | 7.0 | 546 | 0.8220 | 0.6859 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371 | 8.0 | 624 | 1.0092 | 0.6245 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| 0.5371 | 8.0 | 624 | 0.8341 | 0.6823 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371 | 9.0 | 702 | 0.9687 | 0.6426 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| 0.5371 | 9.0 | 702 | 0.8538 | 0.6643 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371 | 10.0 | 780 | 1.0111 | 0.6354 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| 0.5371 | 10.0 | 780 | 0.8117 | 0.6968 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371 | 11.0 | 858 | 0.9616 | 0.6498 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| 0.5371 | 11.0 | 858 | 0.8113 | 0.6895 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.5371 | 12.0 | 936 | 0.9934 | 0.6462 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| 0.5371 | 12.0 | 936 | 0.8179 | 0.6895 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.1174 | 13.0 | 1014 | 1.0097 | 0.6318 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| 0.1174 | 13.0 | 1014 | 0.8191 | 0.7004 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.1174 | 14.0 | 1092 | 1.0019 | 0.6462 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| 0.1174 | 14.0 | 1092 | 0.8157 | 0.7004 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.1174 | 15.0 | 1170 | 1.0127 | 0.6318 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| 0.1174 | 15.0 | 1170 | 0.8178 | 0.6895 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
| 0.1174 | 16.0 | 1248 | 1.0095 | 0.6462 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})]) |
| 0.1174 | 16.0 | 1248 | 0.8178 | 0.6895 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) |
### Framework versions
- Transformers 4.29.1
- Pytorch 1.12.1
- Datasets 2.13.1
- Tokenizers 0.13.3
|