File size: 27,421 Bytes
3f0f0ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
# Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.attention import FeedForward
from diffusers.models.attention_dispatch import dispatch_attention_fn
from diffusers.models.attention_processor import Attention
from diffusers.models.cache_utils import CacheMixin
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
) -> torch.Tensor:
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
Args
timesteps (torch.Tensor):
a 1-D Tensor of N indices, one per batch element. These may be fractional.
embedding_dim (int):
the dimension of the output.
flip_sin_to_cos (bool):
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
downscale_freq_shift (float):
Controls the delta between frequencies between dimensions
scale (float):
Scaling factor applied to the embeddings.
max_period (int):
Controls the maximum frequency of the embeddings
Returns
torch.Tensor: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent).to(timesteps.dtype)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
def apply_rotary_emb_qwen(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
use_real: bool = True,
use_real_unbind_dim: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
if use_real:
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
if use_real_unbind_dim == -1:
# Used for flux, cogvideox, hunyuan-dit
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
elif use_real_unbind_dim == -2:
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
else:
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
else:
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(1)
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
return x_out.type_as(x)
class QwenTimestepProjEmbeddings(nn.Module):
def __init__(self, embedding_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
def forward(self, timestep, hidden_states):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D)
conditioning = timesteps_emb
return conditioning
class QwenEmbedRope(nn.Module):
def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
pos_index = torch.arange(1024)
neg_index = torch.arange(1024).flip(0) * -1 - 1
self.pos_freqs = torch.cat(
[
self.rope_params(pos_index, self.axes_dim[0], self.theta),
self.rope_params(pos_index, self.axes_dim[1], self.theta),
self.rope_params(pos_index, self.axes_dim[2], self.theta),
],
dim=1,
)
self.neg_freqs = torch.cat(
[
self.rope_params(neg_index, self.axes_dim[0], self.theta),
self.rope_params(neg_index, self.axes_dim[1], self.theta),
self.rope_params(neg_index, self.axes_dim[2], self.theta),
],
dim=1,
)
self.rope_cache = {}
# 是否使用 scale rope
self.scale_rope = scale_rope
def rope_params(self, index, dim, theta=10000):
"""
Args:
index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
"""
assert dim % 2 == 0
freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
freqs = torch.polar(torch.ones_like(freqs), freqs)
return freqs
def forward(self, video_fhw, txt_seq_lens, device):
"""
Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
txt_length: [bs] a list of 1 integers representing the length of the text
"""
if self.pos_freqs.device != device:
self.pos_freqs = self.pos_freqs.to(device)
self.neg_freqs = self.neg_freqs.to(device)
if isinstance(video_fhw, list):
video_fhw = video_fhw[0]
frame, height, width = video_fhw
rope_key = f"{frame}_{height}_{width}"
if rope_key not in self.rope_cache:
seq_lens = frame * height * width
freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
freqs_frame = freqs_pos[0][:frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
if self.scale_rope:
freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
else:
freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
self.rope_cache[rope_key] = freqs.clone().contiguous()
vid_freqs = self.rope_cache[rope_key]
if self.scale_rope:
max_vid_index = max(height // 2, width // 2)
else:
max_vid_index = max(height, width)
max_len = max(txt_seq_lens)
txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
return vid_freqs, txt_freqs
class QwenDoubleStreamAttnProcessor2_0:
"""
Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
implements joint attention computation where text and image streams are processed together.
"""
_attention_backend = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor, # Image stream
encoder_hidden_states: torch.FloatTensor = None, # Text stream
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
if encoder_hidden_states is None:
raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
seq_txt = encoder_hidden_states.shape[1]
# Compute QKV for image stream (sample projections)
img_query = attn.to_q(hidden_states)
img_key = attn.to_k(hidden_states)
img_value = attn.to_v(hidden_states)
# Compute QKV for text stream (context projections)
txt_query = attn.add_q_proj(encoder_hidden_states)
txt_key = attn.add_k_proj(encoder_hidden_states)
txt_value = attn.add_v_proj(encoder_hidden_states)
# Reshape for multi-head attention
img_query = img_query.unflatten(-1, (attn.heads, -1))
img_key = img_key.unflatten(-1, (attn.heads, -1))
img_value = img_value.unflatten(-1, (attn.heads, -1))
txt_query = txt_query.unflatten(-1, (attn.heads, -1))
txt_key = txt_key.unflatten(-1, (attn.heads, -1))
txt_value = txt_value.unflatten(-1, (attn.heads, -1))
# Apply QK normalization
if attn.norm_q is not None:
img_query = attn.norm_q(img_query)
if attn.norm_k is not None:
img_key = attn.norm_k(img_key)
if attn.norm_added_q is not None:
txt_query = attn.norm_added_q(txt_query)
if attn.norm_added_k is not None:
txt_key = attn.norm_added_k(txt_key)
# Apply RoPE
if image_rotary_emb is not None:
img_freqs, txt_freqs = image_rotary_emb
img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
# Concatenate for joint attention
# Order: [text, image]
joint_query = torch.cat([txt_query, img_query], dim=1)
joint_key = torch.cat([txt_key, img_key], dim=1)
joint_value = torch.cat([txt_value, img_value], dim=1)
# Compute joint attention
joint_hidden_states = dispatch_attention_fn(
joint_query,
joint_key,
joint_value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
backend=self._attention_backend,
)
# Reshape back
joint_hidden_states = joint_hidden_states.flatten(2, 3)
joint_hidden_states = joint_hidden_states.to(joint_query.dtype)
# Split attention outputs back
txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
# Apply output projections
img_attn_output = attn.to_out[0](img_attn_output)
if len(attn.to_out) > 1:
img_attn_output = attn.to_out[1](img_attn_output) # dropout
txt_attn_output = attn.to_add_out(txt_attn_output)
return img_attn_output, txt_attn_output
@maybe_allow_in_graph
class QwenImageTransformerBlock(nn.Module):
def __init__(
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
):
super().__init__()
self.dim = dim
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
# Image processing modules
self.img_mod = nn.Sequential(
nn.SiLU(),
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
)
self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None, # Enable cross attention for joint computation
added_kv_proj_dim=dim, # Enable added KV projections for text stream
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=False,
bias=True,
processor=QwenDoubleStreamAttnProcessor2_0(),
qk_norm=qk_norm,
eps=eps,
)
self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
# Text processing modules
self.txt_mod = nn.Sequential(
nn.SiLU(),
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
)
self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
# Text doesn't need separate attention - it's handled by img_attn joint computation
self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
def _modulate(self, x, mod_params):
"""Apply modulation to input tensor"""
shift, scale, gate = mod_params.chunk(3, dim=-1)
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_mask: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Get modulation parameters for both streams
img_mod_params = self.img_mod(temb) # [B, 6*dim]
txt_mod_params = self.txt_mod(temb) # [B, 6*dim]
# Split modulation parameters for norm1 and norm2
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
# Process image stream - norm1 + modulation
img_normed = self.img_norm1(hidden_states)
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
# Process text stream - norm1 + modulation
txt_normed = self.txt_norm1(encoder_hidden_states)
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
# Use QwenAttnProcessor2_0 for joint attention computation
# This directly implements the DoubleStreamLayerMegatron logic:
# 1. Computes QKV for both streams
# 2. Applies QK normalization and RoPE
# 3. Concatenates and runs joint attention
# 4. Splits results back to separate streams
joint_attention_kwargs = joint_attention_kwargs or {}
attn_output = self.attn(
hidden_states=img_modulated, # Image stream (will be processed as "sample")
encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context")
encoder_hidden_states_mask=encoder_hidden_states_mask,
image_rotary_emb=image_rotary_emb,
**joint_attention_kwargs,
)
# QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
img_attn_output, txt_attn_output = attn_output
# Apply attention gates and add residual (like in Megatron)
hidden_states = hidden_states + img_gate1 * img_attn_output
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
# Process image stream - norm2 + MLP
img_normed2 = self.img_norm2(hidden_states)
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
img_mlp_output = self.img_mlp(img_modulated2)
hidden_states = hidden_states + img_gate2 * img_mlp_output
# Process text stream - norm2 + MLP
txt_normed2 = self.txt_norm2(encoder_hidden_states)
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
txt_mlp_output = self.txt_mlp(txt_modulated2)
encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
# Clip to prevent overflow for fp16
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
return encoder_hidden_states, hidden_states
class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
"""
The Transformer model introduced in Qwen.
Args:
patch_size (`int`, defaults to `2`):
Patch size to turn the input data into small patches.
in_channels (`int`, defaults to `64`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `None`):
The number of channels in the output. If not specified, it defaults to `in_channels`.
num_layers (`int`, defaults to `60`):
The number of layers of dual stream DiT blocks to use.
attention_head_dim (`int`, defaults to `128`):
The number of dimensions to use for each attention head.
num_attention_heads (`int`, defaults to `24`):
The number of attention heads to use.
joint_attention_dim (`int`, defaults to `3584`):
The number of dimensions to use for the joint attention (embedding/channel dimension of
`encoder_hidden_states`).
guidance_embeds (`bool`, defaults to `False`):
Whether to use guidance embeddings for guidance-distilled variant of the model.
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
The dimensions to use for the rotary positional embeddings.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["QwenImageTransformerBlock"]
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
@register_to_config
def __init__(
self,
patch_size: int = 2,
in_channels: int = 64,
out_channels: Optional[int] = 16,
num_layers: int = 60,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 3584,
guidance_embeds: bool = False, # TODO: this should probably be removed
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
):
super().__init__()
self.out_channels = out_channels or in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
self.img_in = nn.Linear(in_channels, self.inner_dim)
self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
QwenImageTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for _ in range(num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
encoder_hidden_states_mask: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
txt_seq_lens: Optional[List[int]] = None,
guidance: torch.Tensor = None, # TODO: this should probably be removed
attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
"""
The [`QwenTransformer2DModel`] forward method.
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
Input `hidden_states`.
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
Mask of the input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.img_in(hidden_states)
timestep = timestep.to(hidden_states.dtype)
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
encoder_hidden_states = self.txt_in(encoder_hidden_states)
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
temb = (
self.time_text_embed(timestep, hidden_states)
if guidance is None
else self.time_text_embed(timestep, guidance, hidden_states)
)
image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device)
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
encoder_hidden_states,
encoder_hidden_states_mask,
temb,
image_rotary_emb,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=attention_kwargs,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
# Use only the image part (hidden_states) from the dual-stream blocks
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
|