|
--- |
|
datasets: |
|
- IlyaGusev/ru_turbo_alpaca |
|
- IlyaGusev/ru_turbo_saiga |
|
- IlyaGusev/oasst1_ru_main_branch |
|
- IlyaGusev/ru_sharegpt_cleaned |
|
language: |
|
- ru |
|
pipeline_tag: conversational |
|
--- |
|
|
|
# Saiga 30B, Russian LLaMA-based chatbot |
|
|
|
Based on [LLaMA 30B](https://huggingface.co/huggyllama/llama-30b). |
|
|
|
* This is an adapter-only version. |
|
|
|
Colab: [link](https://colab.research.google.com/drive/1zvF0I52NJ7ngAk_zWzEA_QOYOMCdITZN?usp=sharing) |
|
|
|
Training code: [link](https://github.com/IlyaGusev/rulm/tree/master/self_instruct) |
|
|
|
```python |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
|
|
MODEL_NAME = "IlyaGusev/saiga_30b_lora" |
|
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n" |
|
DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им." |
|
|
|
class Conversation: |
|
def __init__( |
|
self, |
|
message_template=DEFAULT_MESSAGE_TEMPLATE, |
|
system_prompt=DEFAULT_SYSTEM_PROMPT, |
|
start_token_id=1, |
|
bot_token_id=9225 |
|
): |
|
self.message_template = message_template |
|
self.start_token_id = start_token_id |
|
self.bot_token_id = bot_token_id |
|
self.messages = [{ |
|
"role": "system", |
|
"content": system_prompt |
|
}] |
|
|
|
def get_start_token_id(self): |
|
return self.start_token_id |
|
|
|
def get_bot_token_id(self): |
|
return self.bot_token_id |
|
|
|
def add_user_message(self, message): |
|
self.messages.append({ |
|
"role": "user", |
|
"content": message |
|
}) |
|
|
|
def add_bot_message(self, message): |
|
self.messages.append({ |
|
"role": "bot", |
|
"content": message |
|
}) |
|
|
|
def get_prompt(self, tokenizer): |
|
final_text = "" |
|
for message in self.messages: |
|
message_text = self.message_template.format(**message) |
|
final_text += message_text |
|
final_text += tokenizer.decode([self.start_token_id, self.bot_token_id]) |
|
return final_text.strip() |
|
|
|
def generate(model, tokenizer, prompt, generation_config): |
|
data = tokenizer(prompt, return_tensors="pt") |
|
data = {k: v.to(model.device) for k, v in data.items()} |
|
output_ids = model.generate( |
|
**data, |
|
generation_config=generation_config |
|
)[0] |
|
output_ids = output_ids[len(data["input_ids"][0]):] |
|
output = tokenizer.decode(output_ids, skip_special_tokens=True) |
|
return output.strip() |
|
|
|
config = PeftConfig.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
load_in_8bit=True, |
|
device_map="auto" |
|
) |
|
model = PeftModel.from_pretrained(model, MODEL_NAME) |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
generation_config = GenerationConfig.from_pretrained(MODEL_NAME) |
|
print(generation_config) |
|
|
|
inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"] |
|
for inp in inputs: |
|
conversation = Conversation() |
|
conversation.add_user_message(inp) |
|
prompt = conversation.get_prompt(tokenizer) |
|
|
|
output = generate(model, tokenizer, prompt, generation_config) |
|
print(inp) |
|
print(output) |
|
print() |
|
print("==============================") |
|
print() |
|
``` |
|
|
|
Examples: |
|
``` |
|
User: Почему трава зеленая? |
|
Saiga: Трава зеленая потому, что она содержит хлорофилл - пигмент, который отвечает за зеленый цвет листьев растений. Хлорофилл используется для фотосинтеза - процесса преобразования света в энергию, необходимую для роста и развития растения. Кроме того, зеленый цвет является наиболее распространенным цветом среди всех растительных видов на Земле, поэтому большинство трав имеют зеленый цвет. |
|
``` |
|
|
|
``` |
|
User: Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч |
|
Saiga: Однажды летом, когда все дети уже вышли из школы и начали проводить время на улице, Таня решила поиграть в футбол со своими друзьями. Она взяла свой любимый мяч и отправилась к парку, где они обычно играют. |
|
Когда она пришла туда, ее друзья уже были готовы к игре. Они разделились на две команды и начали играть. Таня была очень энергичной и активной, она бежала по полю, прыгала и ловила мяч. |
|
Но однажды, когда она пыталась заблокировать удар соперника, мяч ударился ей прямо в лицо. Она упала на землю и не могла двигаться. Ее друзья сразу же подобрали ее и провели медицинскую помощь. |
|
Так как Тане было больно, они решили не продолжать игру и вернуться домой. Но Таня не хотела пропустить возможность играть в футбол, поэтому она решила найти другой способ. |
|
Она купила себе новый мяч и начала тренироваться дома. Она старалась делать упражнения каждый день, чтобы улучшить свою технику и скорость. Вскоре она стала лучшей футболисткой в своей команде. |
|
Ее друзья были поражены ее умением играть в футбол и часто приглашали ее на матчи. Таня была очень горда своей новой профессией и никогда не переставала тренироваться. |
|
В конце концов, благодаря своим усилиям, она стала настоящей звездой футбола и даже получила предложение от известного клуба. Она приняла его и начала играть на профессиональном уровне. |
|
Таким образом, мяч стал для Тани не только игрушкой, но и источником ее успеха и счастья. |
|
``` |
|
|
|
``` |
|
User: Реши уравнение 4x + 5 = 21 |
|
Saiga: Для решения этого уравнения нужно найти значение переменной x. Для этого нужно вычесть из левой части уравнения 5, чтобы получить 4x = 16. Далее, делим обе стороны на 4, чтобы получить x = 4. Таким образом, x равно 4. |
|
``` |
|
|
|
``` |
|
User: Заполни пропуски в предложении. Дано: Я пытался ____ от маньяка, но он меня настиг |
|
Saiga: Я пытался убежать от маньяка, но он меня настиг. |
|
``` |
|
|
|
v1: |
|
- revision 3d3da94b0491cc4b72548e113c39060f228054cb |
|
- wandb [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/x2c19kfk) |
|
- 4 datasets: ru_turbo_alpaca, ru_turbo_saiga, ru_sharegpt_cleaned, oasst1_ru_main_branch |
|
- Datasets merging script: [create_chat_set.py](https://github.com/IlyaGusev/rulm/blob/ef58f3d82d6e7b3784d42167ff69188d3766ab61/self_instruct/src/data_processing/create_chat_set.py) |
|
- Loss: 0.822 |
|
- Context length: 2000 |
|
- Conversational template: `"<s>{role}\n{content}</s>"` |
|
- Possible roles: `["system", "user", "bot"]` |
|
- System prompt: `"Ты — Сайга, русскоязычный автоматический ассистент. Ты разговарив |