Illia56's picture
Update README.md
78e68d8
|
raw
history blame
4.72 kB
metadata
datasets:
  - Illia56/Military-Aircraft-Detection
license: apache-2.0
widget:
  - src: https://www.thedrive.com/uploads/2022/11/10/MIG31-Ukraine-Russia.jpg

Model Card: Military Aircraft Detection with Vision Transformer (ViT)

Model Information

  • Model Name: Military Aircraft Image Detection
  • Model Type: Vision Transformer (ViT)

Model Overview

  • Purpose: The model is designed for the detection and classification of military aircraft in images.
  • Intended Use: Military surveillance, object recognition, and security applications.

Model Training

  • Training Data: Dataset of military aircraft images collected from Illia56/Military-Aircraft-Detection.
  • Data Preprocessing: Random oversampling for class balance, data augmentation (rotation, flip, sharpness adjustment).
  • Model Architecture: Vision Transformer (ViT) for image classification.
  • Pre-trained Model: google/vit-base-patch16-224-in21k.

Model Evaluation

  • Evaluation Metrics:
    • Accuracy
    • F1 Score
    • Confusion Matrix
  • Evaluation Dataset: Split from the original dataset for testing.
  • Class Precision Recall F1-Score Support
    A10 0.6716 0.7368 0.7027 247
    A400M 0.6217 0.6748 0.6472 246
    AG600 0.4512 0.9919 0.6203 247
    AV8B 0.6618 0.7287 0.6936 247
    B1 0.9000 0.6194 0.7338 247
    B2 0.7862 0.9231 0.8492 247
    B52 0.9528 0.4089 0.5722 247
    Be200 0.8333 0.8300 0.8316 247
    C130 0.8600 0.1748 0.2905 246
    C17 0.5556 0.0405 0.0755 247
    C2 0.5845 0.8543 0.6941 247
    C5 0.3776 0.7490 0.5020 247
    E2 0.8447 0.9028 0.8728 247
    E7 0.6000 0.9595 0.7383 247
    EF2000 1.0000 0.0364 0.0703 247
    F117 0.6005 0.9433 0.7339 247
    F14 0.9773 0.1741 0.2955 247
    F15 0.2919 0.2186 0.2500 247
    F16 0.8333 0.0203 0.0397 246
    F18 0.9355 0.2348 0.3754 247
    F22 0.4624 0.4980 0.4795 247
    F35 0.5373 0.2915 0.3780 247
    F4 0.4317 0.2429 0.3109 247
    J10 0.8711 0.6842 0.7664 247
    J20 0.5049 0.6301 0.5606 246
    JAS39 0.4535 0.4737 0.4634 247
    KC135 0.8957 0.7683 0.8271 246
    MQ9 0.7358 0.8943 0.8073 246
    Mig31 0.6080 0.4899 0.5426 247
    Mirage2000 0.3245 0.6478 0.4324 247
    P3 0.9423 0.3968 0.5584 247
    RQ4 0.7166 0.8907 0.7942 247
    Rafale 0.3063 0.3968 0.3457 247
    SR71 0.7824 0.7571 0.7695 247
    Su25 1.0000 0.3618 0.5313 246
    Su34 0.5340 0.8583 0.6584 247
    Su57 0.6143 0.7317 0.6679 246
    Tornado 0.6883 0.2146 0.3272 247
    Tu160 0.8000 0.8421 0.8205 247
    Tu95 0.8340 0.8543 0.8440 247
    U2 0.9371 0.6032 0.7340 247
    US2 0.7074 0.6559 0.6807 247
    V22 0.7212 0.9109 0.8050 247
    Vulcan 0.3343 0.8947 0.4868 247
    XB70 0.6657 0.9676 0.7888 247
    YF23 0.5490 0.7967 0.6501 246
    Accuracy 0.6082 11353
    Macro Avg 0.6804 0.6082 0.5787 11353
    Weighted Avg 0.6803 0.6082 0.5787 11353

Potential Bias

  • Bias in Training Data: Possible biases related to the data collection process.
  • Limitations: Potential biases due to the nature of the dataset and model architecture.

Ethical Considerations

  • Fairness: Address any concerns regarding fairness and potential bias in model predictions.
  • Privacy: Describe any privacy considerations related to the model's deployment and use.

Model Usage Guidelines

  • Recommended Use Cases: Military surveillance, security applications.
  • Limitations: Clearly outline model limitations and potential failure scenarios.
  • Legal and Ethical Considerations: Compliance with legal and ethical standards.