metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- my
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:389
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Tukang kayu adalah individu yang bekerja dengan kayu untuk membina atau
membaiki struktur dan perabot.
sentences:
- Apakah itu pakar latihan?
- Apakah itu tukang kayu?
- Apakah itu pakar mikrobiologi?
- source_sentence: >-
Pakar pemakanan adalah profesional yang memberi nasihat mengenai pemakanan
dan diet untuk meningkatkan kesihatan.
sentences:
- Apakah itu penulis kreatif?
- Apakah itu ahli geologi marin?
- Apakah itu pakar pemakanan?
- source_sentence: >-
Dokter adalah profesional medis yang mendiagnosis dan merawat penyakit
serta cedera pasien.
sentences:
- Apa itu dokter?
- Apakah itu pengurus kargo?
- Apakah itu pakar teknologi nano?
- source_sentence: >-
Juruteknik pembinaan kapal adalah individu yang terlibat dalam proses
pembinaan dan pembaikan kapal, memastikan struktur dan sistem kapal dibina
mengikut spesifikasi.
sentences:
- Apakah itu juruteknik pembinaan kapal?
- Apakah itu pengurus projek IT?
- Apakah itu pakar perkapalan?
- source_sentence: >-
Penyelaras kempen iklan adalah individu yang menyelaraskan semua aspek
kempen iklan, termasuk jadual, pelaksanaan, dan laporan prestasi.
sentences:
- Apakah itu jurutera sistem propulsi?
- Apakah itu pembuat roti?
- Apakah itu penyelaras kempen iklan?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8226221079691517
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9768637532133676
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.987146529562982
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9974293059125964
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8226221079691517
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32562125107112255
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1974293059125964
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09974293059125963
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8226221079691517
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9768637532133676
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.987146529562982
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9974293059125964
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9255252859780915
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9009670706328802
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9011023703216912
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8046272493573264
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.974293059125964
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.987146529562982
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9922879177377892
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8046272493573264
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.324764353041988
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1974293059125964
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0992287917737789
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8046272493573264
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.974293059125964
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.987146529562982
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9922879177377892
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9158947182791948
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8895519647447668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8900397092700132
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7892030848329049
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9665809768637532
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.974293059125964
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.987146529562982
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7892030848329049
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3221936589545844
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19485861182519276
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0987146529562982
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7892030848329049
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9665809768637532
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.974293059125964
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.987146529562982
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9046037741833534
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8764455053658137
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8770676096874822
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7480719794344473
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9408740359897172
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9537275064267352
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9691516709511568
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7480719794344473
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31362467866323906
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.190745501285347
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09691516709511568
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7480719794344473
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9408740359897172
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9537275064267352
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9691516709511568
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8765083941585068
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8449820459460564
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8461326502118156
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.7223650385604113
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.897172236503856
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9254498714652957
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9434447300771208
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7223650385604113
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29905741216795206
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18508997429305912
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09434447300771207
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7223650385604113
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.897172236503856
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9254498714652957
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9434447300771208
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8455216956566762
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8126851511812953
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8145628077638951
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: my
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka_test_my")
sentences = [
'Penyelaras kempen iklan adalah individu yang menyelaraskan semua aspek kempen iklan, termasuk jadual, pelaksanaan, dan laporan prestasi.',
'Apakah itu penyelaras kempen iklan?',
'Apakah itu pembuat roti?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8226 |
cosine_accuracy@3 |
0.9769 |
cosine_accuracy@5 |
0.9871 |
cosine_accuracy@10 |
0.9974 |
cosine_precision@1 |
0.8226 |
cosine_precision@3 |
0.3256 |
cosine_precision@5 |
0.1974 |
cosine_precision@10 |
0.0997 |
cosine_recall@1 |
0.8226 |
cosine_recall@3 |
0.9769 |
cosine_recall@5 |
0.9871 |
cosine_recall@10 |
0.9974 |
cosine_ndcg@10 |
0.9255 |
cosine_mrr@10 |
0.901 |
cosine_map@100 |
0.9011 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8046 |
cosine_accuracy@3 |
0.9743 |
cosine_accuracy@5 |
0.9871 |
cosine_accuracy@10 |
0.9923 |
cosine_precision@1 |
0.8046 |
cosine_precision@3 |
0.3248 |
cosine_precision@5 |
0.1974 |
cosine_precision@10 |
0.0992 |
cosine_recall@1 |
0.8046 |
cosine_recall@3 |
0.9743 |
cosine_recall@5 |
0.9871 |
cosine_recall@10 |
0.9923 |
cosine_ndcg@10 |
0.9159 |
cosine_mrr@10 |
0.8896 |
cosine_map@100 |
0.89 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7892 |
cosine_accuracy@3 |
0.9666 |
cosine_accuracy@5 |
0.9743 |
cosine_accuracy@10 |
0.9871 |
cosine_precision@1 |
0.7892 |
cosine_precision@3 |
0.3222 |
cosine_precision@5 |
0.1949 |
cosine_precision@10 |
0.0987 |
cosine_recall@1 |
0.7892 |
cosine_recall@3 |
0.9666 |
cosine_recall@5 |
0.9743 |
cosine_recall@10 |
0.9871 |
cosine_ndcg@10 |
0.9046 |
cosine_mrr@10 |
0.8764 |
cosine_map@100 |
0.8771 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7481 |
cosine_accuracy@3 |
0.9409 |
cosine_accuracy@5 |
0.9537 |
cosine_accuracy@10 |
0.9692 |
cosine_precision@1 |
0.7481 |
cosine_precision@3 |
0.3136 |
cosine_precision@5 |
0.1907 |
cosine_precision@10 |
0.0969 |
cosine_recall@1 |
0.7481 |
cosine_recall@3 |
0.9409 |
cosine_recall@5 |
0.9537 |
cosine_recall@10 |
0.9692 |
cosine_ndcg@10 |
0.8765 |
cosine_mrr@10 |
0.845 |
cosine_map@100 |
0.8461 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7224 |
cosine_accuracy@3 |
0.8972 |
cosine_accuracy@5 |
0.9254 |
cosine_accuracy@10 |
0.9434 |
cosine_precision@1 |
0.7224 |
cosine_precision@3 |
0.2991 |
cosine_precision@5 |
0.1851 |
cosine_precision@10 |
0.0943 |
cosine_recall@1 |
0.7224 |
cosine_recall@3 |
0.8972 |
cosine_recall@5 |
0.9254 |
cosine_recall@10 |
0.9434 |
cosine_ndcg@10 |
0.8455 |
cosine_mrr@10 |
0.8127 |
cosine_map@100 |
0.8146 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 389 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 27 tokens
- mean: 61.59 tokens
- max: 139 tokens
|
- min: 8 tokens
- mean: 15.26 tokens
- max: 24 tokens
|
- Samples:
positive |
anchor |
Dokter adalah profesional medis yang mendiagnosis dan merawat penyakit serta cedera pasien. |
Apa itu dokter? |
Pereka sistem akuakultur adalah individu yang merancang dan membangunkan sistem untuk membiakkan ikan secara berkesan, termasuk reka bentuk kolam, sistem aliran air, dan pemantauan kualiti air. |
Apakah itu pereka sistem akuakultur? |
Ahli sejarah seni adalah individu yang mengkaji perkembangan seni sepanjang sejarah dan konteks sosial, politik, dan budaya yang mempengaruhi penciptaannya. Mereka bekerja di muzium, galeri, dan institusi akademik, menganalisis karya seni |
Apakah itu ahli sejarah seni? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
tf32
: False
load_best_model_at_end
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
1.0 |
1 |
0.6375 |
0.7065 |
0.7339 |
0.5984 |
0.7483 |
2.0 |
3 |
0.8282 |
0.8712 |
0.8821 |
0.7994 |
0.8929 |
2.4615 |
4 |
0.8461 |
0.8771 |
0.89 |
0.8146 |
0.9011 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}