Andrei Panferov commited on
Commit
088443f
·
1 Parent(s): e6c6cc5

everything

Browse files
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/blacksamorez/models/Mixtral-8x7b-AQLM-2Bit-1x16-hf/",
3
+ "aqlm": {
4
+ "in_group_size": 8,
5
+ "nbits_per_codebook": 16,
6
+ "num_codebooks": 1,
7
+ "out_group_size": 1
8
+ },
9
+ "architectures": [
10
+ "MixtralForCausalLM"
11
+ ],
12
+ "attention_dropout": 0.0,
13
+ "auto_map": {
14
+ "AutoConfig": "configuration_mixtral_aqlm.MixtralConfig",
15
+ "AutoModelForCausalLM": "modeling_mixtral_aqlm.MixtralForCausalLM"
16
+ },
17
+ "bos_token_id": 1,
18
+ "eos_token_id": 2,
19
+ "hidden_act": "silu",
20
+ "hidden_size": 4096,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 14336,
23
+ "max_position_embeddings": 32768,
24
+ "model_type": "mixtral_aqlm",
25
+ "num_attention_heads": 32,
26
+ "num_experts_per_tok": 2,
27
+ "num_hidden_layers": 32,
28
+ "num_key_value_heads": 8,
29
+ "num_local_experts": 8,
30
+ "output_router_logits": false,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_theta": 1000000.0,
33
+ "router_aux_loss_coef": 0.02,
34
+ "sliding_window": null,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "float16",
37
+ "transformers_version": "4.37.0",
38
+ "use_cache": true,
39
+ "vocab_size": 32000
40
+ }
configuration_mixtral_aqlm.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import MixtralConfig as OrigLlamaConfig
2
+
3
+
4
+ class MixtralConfig(OrigLlamaConfig):
5
+ model_type = "mixtral_aqlm"
6
+
7
+ def __init__(
8
+ self,
9
+ aqlm: dict[str, int] = {
10
+ "nbits_per_codebook": 16,
11
+ "num_codebooks": 1,
12
+ "out_group_size": 8,
13
+ "in_group_size": 1,
14
+ },
15
+ **kwargs,
16
+ ):
17
+ super().__init__(**kwargs)
18
+ self.aqlm = aqlm
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.37.0"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44c7cffcc8afbc272ef658b90dfbdb4fb0b3080a028b2400149961b9ebb23313
3
+ size 4991623320
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72d4204d69cd119be17f3084529eefd0f1c7c320032a5640ec55667fe6b218cf
3
+ size 4997179136
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc2942eb9be948db2fe58a571f99af471fa88a504defd93c64a4d8ebf7ca0a65
3
+ size 3105262720
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_mixtral_aqlm.py ADDED
@@ -0,0 +1,1603 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # This code is a modification of transformers/models/mixtral/modeling_mixtral.py , which is has the following copyright:
3
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ """ PyTorch Mixtral model."""
22
+ import inspect
23
+ import math
24
+ import warnings
25
+ from typing import List, Optional, Tuple, Union
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ import torch.utils.checkpoint
30
+ from aqlm import QuantizedLinear
31
+ from torch import nn
32
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
33
+ from transformers.activations import ACT2FN
34
+ from transformers.cache_utils import Cache, DynamicCache
35
+ from transformers.modeling_attn_mask_utils import (
36
+ _prepare_4d_causal_attention_mask,
37
+ _prepare_4d_causal_attention_mask_for_sdpa,
38
+ )
39
+ from transformers.modeling_outputs import (
40
+ MoeCausalLMOutputWithPast,
41
+ MoeModelOutputWithPast,
42
+ SequenceClassifierOutputWithPast,
43
+ )
44
+ from transformers.modeling_utils import PreTrainedModel
45
+ from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
46
+ from transformers.utils import (
47
+ add_start_docstrings,
48
+ add_start_docstrings_to_model_forward,
49
+ is_flash_attn_2_available,
50
+ is_flash_attn_greater_or_equal_2_10,
51
+ logging,
52
+ replace_return_docstrings,
53
+ )
54
+ from transformers.utils.import_utils import is_torch_fx_available
55
+
56
+ from .configuration_mixtral_aqlm import MixtralConfig
57
+
58
+ if is_flash_attn_2_available():
59
+ try:
60
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
61
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
62
+ except:
63
+ pass
64
+
65
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
66
+
67
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
68
+ # It means that the function will not be traced through and simply appear as a node in the graph.
69
+ if is_torch_fx_available():
70
+ if not is_torch_greater_or_equal_than_1_13:
71
+ import torch.fx
72
+
73
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
74
+
75
+
76
+ logger = logging.get_logger(__name__)
77
+
78
+ _CONFIG_FOR_DOC = "MixtralConfig"
79
+
80
+
81
+ def load_balancing_loss_func(
82
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
83
+ ) -> float:
84
+ r"""
85
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
86
+
87
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
88
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
89
+ experts is too unbalanced.
90
+
91
+ Args:
92
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
93
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
94
+ shape [batch_size X sequence_length, num_experts].
95
+ attention_mask (`torch.Tensor`, None):
96
+ The attention_mask used in forward function
97
+ shape [batch_size X sequence_length] if not None.
98
+ num_experts (`int`, *optional*):
99
+ Number of experts
100
+
101
+ Returns:
102
+ The auxiliary loss.
103
+ """
104
+ if gate_logits is None or not isinstance(gate_logits, tuple):
105
+ return 0
106
+
107
+ if isinstance(gate_logits, tuple):
108
+ compute_device = gate_logits[0].device
109
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
110
+
111
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
112
+
113
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
114
+
115
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
116
+
117
+ if attention_mask is None:
118
+ # Compute the percentage of tokens routed to each experts
119
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
120
+
121
+ # Compute the average probability of routing to these experts
122
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
123
+ else:
124
+ batch_size, sequence_length = attention_mask.shape
125
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
126
+
127
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
128
+ expert_attention_mask = (
129
+ attention_mask[None, :, :, None, None]
130
+ .expand((num_hidden_layers, batch_size, sequence_length, 2, num_experts))
131
+ .reshape(-1, 2, num_experts)
132
+ .to(compute_device)
133
+ )
134
+
135
+ # Compute the percentage of tokens routed to each experts
136
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
137
+ expert_attention_mask, dim=0
138
+ )
139
+
140
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
141
+ router_per_expert_attention_mask = (
142
+ attention_mask[None, :, :, None]
143
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
144
+ .reshape(-1, num_experts)
145
+ .to(compute_device)
146
+ )
147
+
148
+ # Compute the average probability of routing to these experts
149
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
150
+ router_per_expert_attention_mask, dim=0
151
+ )
152
+
153
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
154
+ return overall_loss * num_experts
155
+
156
+
157
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
158
+ def _get_unpad_data(attention_mask):
159
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
160
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
161
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
162
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
163
+ return (
164
+ indices,
165
+ cu_seqlens,
166
+ max_seqlen_in_batch,
167
+ )
168
+
169
+
170
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mixtral
171
+ class MixtralRMSNorm(nn.Module):
172
+ def __init__(self, hidden_size, eps=1e-6):
173
+ """
174
+ MixtralRMSNorm is equivalent to T5LayerNorm
175
+ """
176
+ super().__init__()
177
+ self.weight = nn.Parameter(torch.ones(hidden_size))
178
+ self.variance_epsilon = eps
179
+
180
+ def forward(self, hidden_states):
181
+ input_dtype = hidden_states.dtype
182
+ hidden_states = hidden_states.to(torch.float32)
183
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
184
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
185
+ return self.weight * hidden_states.to(input_dtype)
186
+
187
+
188
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mixtral
189
+ class MixtralRotaryEmbedding(nn.Module):
190
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
191
+ super().__init__()
192
+
193
+ self.dim = dim
194
+ self.max_position_embeddings = max_position_embeddings
195
+ self.base = base
196
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
197
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
198
+
199
+ # Build here to make `torch.jit.trace` work.
200
+ self._set_cos_sin_cache(
201
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
202
+ )
203
+
204
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
205
+ self.max_seq_len_cached = seq_len
206
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
207
+
208
+ freqs = torch.outer(t, self.inv_freq)
209
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
210
+ emb = torch.cat((freqs, freqs), dim=-1)
211
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
212
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
213
+
214
+ def forward(self, x, seq_len=None):
215
+ # x: [bs, num_attention_heads, seq_len, head_size]
216
+ if seq_len > self.max_seq_len_cached:
217
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
218
+
219
+ return (
220
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
221
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
222
+ )
223
+
224
+
225
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
226
+ def rotate_half(x):
227
+ """Rotates half the hidden dims of the input."""
228
+ x1 = x[..., : x.shape[-1] // 2]
229
+ x2 = x[..., x.shape[-1] // 2 :]
230
+ return torch.cat((-x2, x1), dim=-1)
231
+
232
+
233
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
234
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
235
+ """Applies Rotary Position Embedding to the query and key tensors.
236
+
237
+ Args:
238
+ q (`torch.Tensor`): The query tensor.
239
+ k (`torch.Tensor`): The key tensor.
240
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
241
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
242
+ position_ids (`torch.Tensor`):
243
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
244
+ used to pass offsetted position ids when working with a KV-cache.
245
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
246
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
247
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
248
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
249
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
250
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
251
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
252
+ Returns:
253
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
254
+ """
255
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
256
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
257
+ q_embed = (q * cos) + (rotate_half(q) * sin)
258
+ k_embed = (k * cos) + (rotate_half(k) * sin)
259
+ return q_embed, k_embed
260
+
261
+
262
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
263
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
264
+ """
265
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
266
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
267
+ """
268
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
269
+ if n_rep == 1:
270
+ return hidden_states
271
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
272
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
273
+
274
+
275
+ # Copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Mixtral
276
+ class MixtralAttention(nn.Module):
277
+ """
278
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
279
+ and "Generating Long Sequences with Sparse Transformers".
280
+ """
281
+
282
+ def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
283
+ super().__init__()
284
+ self.config = config
285
+ self.layer_idx = layer_idx
286
+ if layer_idx is None:
287
+ logger.warning_once(
288
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
289
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
290
+ "when creating this class."
291
+ )
292
+
293
+ self.hidden_size = config.hidden_size
294
+ self.num_heads = config.num_attention_heads
295
+ self.head_dim = self.hidden_size // self.num_heads
296
+ self.num_key_value_heads = config.num_key_value_heads
297
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
298
+ self.max_position_embeddings = config.max_position_embeddings
299
+ self.rope_theta = config.rope_theta
300
+ self.is_causal = True
301
+ self.attention_dropout = config.attention_dropout
302
+
303
+ if (self.head_dim * self.num_heads) != self.hidden_size:
304
+ raise ValueError(
305
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
306
+ f" and `num_heads`: {self.num_heads})."
307
+ )
308
+ self.q_proj = QuantizedLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, **config.aqlm)
309
+ self.k_proj = QuantizedLinear(
310
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, **config.aqlm
311
+ )
312
+ self.v_proj = QuantizedLinear(
313
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, **config.aqlm
314
+ )
315
+ self.o_proj = QuantizedLinear(self.num_heads * self.head_dim, self.hidden_size, bias=False, **config.aqlm)
316
+
317
+ self.rotary_emb = MixtralRotaryEmbedding(
318
+ self.head_dim,
319
+ max_position_embeddings=self.max_position_embeddings,
320
+ base=self.rope_theta,
321
+ )
322
+
323
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
324
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
325
+
326
+ def forward(
327
+ self,
328
+ hidden_states: torch.Tensor,
329
+ attention_mask: Optional[torch.Tensor] = None,
330
+ position_ids: Optional[torch.LongTensor] = None,
331
+ past_key_value: Optional[Cache] = None,
332
+ output_attentions: bool = False,
333
+ use_cache: bool = False,
334
+ **kwargs,
335
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
336
+ if "padding_mask" in kwargs:
337
+ warnings.warn(
338
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
339
+ )
340
+ bsz, q_len, _ = hidden_states.size()
341
+
342
+ query_states = self.q_proj(hidden_states)
343
+ key_states = self.k_proj(hidden_states)
344
+ value_states = self.v_proj(hidden_states)
345
+
346
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
347
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
348
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
349
+
350
+ kv_seq_len = key_states.shape[-2]
351
+ if past_key_value is not None:
352
+ if self.layer_idx is None:
353
+ raise ValueError(
354
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
355
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
356
+ "with a layer index."
357
+ )
358
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
359
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
360
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
361
+
362
+ if past_key_value is not None:
363
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
364
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
365
+
366
+ # repeat k/v heads if n_kv_heads < n_heads
367
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
368
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
369
+
370
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
371
+
372
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
373
+ raise ValueError(
374
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
375
+ f" {attn_weights.size()}"
376
+ )
377
+
378
+ if attention_mask is not None:
379
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
380
+ raise ValueError(
381
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
382
+ )
383
+
384
+ attn_weights = attn_weights + attention_mask
385
+
386
+ # upcast attention to fp32
387
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
388
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
389
+ attn_output = torch.matmul(attn_weights, value_states)
390
+
391
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
392
+ raise ValueError(
393
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
394
+ f" {attn_output.size()}"
395
+ )
396
+
397
+ attn_output = attn_output.transpose(1, 2).contiguous()
398
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
399
+
400
+ attn_output = self.o_proj(attn_output)
401
+
402
+ if not output_attentions:
403
+ attn_weights = None
404
+
405
+ return attn_output, attn_weights, past_key_value
406
+
407
+
408
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Mixtral
409
+ class MixtralFlashAttention2(MixtralAttention):
410
+ """
411
+ Mixtral flash attention module. This module inherits from `MixtralAttention` as the weights of the module stays
412
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
413
+ flash attention and deal with padding tokens in case the input contains any of them.
414
+ """
415
+
416
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
417
+ def __init__(self, *args, **kwargs):
418
+ super().__init__(*args, **kwargs)
419
+
420
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
421
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
422
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
423
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
424
+
425
+ def forward(
426
+ self,
427
+ hidden_states: torch.Tensor,
428
+ attention_mask: Optional[torch.Tensor] = None,
429
+ position_ids: Optional[torch.LongTensor] = None,
430
+ past_key_value: Optional[Cache] = None,
431
+ output_attentions: bool = False,
432
+ use_cache: bool = False,
433
+ **kwargs,
434
+ ):
435
+ if "padding_mask" in kwargs:
436
+ warnings.warn(
437
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
438
+ )
439
+
440
+ # overwrite attention_mask with padding_mask
441
+ attention_mask = kwargs.pop("padding_mask")
442
+ bsz, q_len, _ = hidden_states.size()
443
+
444
+ query_states = self.q_proj(hidden_states)
445
+ key_states = self.k_proj(hidden_states)
446
+ value_states = self.v_proj(hidden_states)
447
+
448
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
449
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
450
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
451
+
452
+ kv_seq_len = key_states.shape[-2]
453
+ if past_key_value is not None:
454
+ if self.layer_idx is None:
455
+ raise ValueError(
456
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
457
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
458
+ "with a layer index."
459
+ )
460
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
461
+
462
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
463
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
464
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
465
+
466
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
467
+
468
+ use_sliding_windows = (
469
+ _flash_supports_window_size
470
+ and getattr(self.config, "sliding_window", None) is not None
471
+ and kv_seq_len > self.config.sliding_window
472
+ )
473
+
474
+ if not _flash_supports_window_size:
475
+ logger.warning_once(
476
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
477
+ " make sure to upgrade flash-attn library."
478
+ )
479
+
480
+ if past_key_value is not None:
481
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
482
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
483
+ if (
484
+ getattr(self.config, "sliding_window", None) is not None
485
+ and kv_seq_len > self.config.sliding_window
486
+ and cache_has_contents
487
+ ):
488
+ slicing_tokens = 1 - self.config.sliding_window
489
+
490
+ past_key = past_key_value[self.layer_idx][0]
491
+ past_value = past_key_value[self.layer_idx][1]
492
+
493
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
494
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
495
+
496
+ if past_key.shape[-2] != self.config.sliding_window - 1:
497
+ raise ValueError(
498
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
499
+ f" {past_key.shape}"
500
+ )
501
+
502
+ if attention_mask is not None:
503
+ attention_mask = attention_mask[:, slicing_tokens:]
504
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
505
+
506
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
507
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
508
+
509
+ # repeat k/v heads if n_kv_heads < n_heads
510
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
511
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
512
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
513
+
514
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
515
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
516
+ # cast them back in float16 just to be sure everything works as expected.
517
+ input_dtype = query_states.dtype
518
+ if input_dtype == torch.float32:
519
+ if torch.is_autocast_enabled():
520
+ target_dtype = torch.get_autocast_gpu_dtype()
521
+ # Handle the case where the model is quantized
522
+ elif hasattr(self.config, "_pre_quantization_dtype"):
523
+ target_dtype = self.config._pre_quantization_dtype
524
+ else:
525
+ target_dtype = self.q_proj.weight.dtype
526
+
527
+ logger.warning_once(
528
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
529
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
530
+ f" {target_dtype}."
531
+ )
532
+
533
+ query_states = query_states.to(target_dtype)
534
+ key_states = key_states.to(target_dtype)
535
+ value_states = value_states.to(target_dtype)
536
+
537
+ # Reashape to the expected shape for Flash Attention
538
+ query_states = query_states.transpose(1, 2)
539
+ key_states = key_states.transpose(1, 2)
540
+ value_states = value_states.transpose(1, 2)
541
+
542
+ attn_output = self._flash_attention_forward(
543
+ query_states,
544
+ key_states,
545
+ value_states,
546
+ attention_mask,
547
+ q_len,
548
+ dropout=dropout_rate,
549
+ use_sliding_windows=use_sliding_windows,
550
+ )
551
+
552
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
553
+ attn_output = self.o_proj(attn_output)
554
+
555
+ if not output_attentions:
556
+ attn_weights = None
557
+
558
+ return attn_output, attn_weights, past_key_value
559
+
560
+ def _flash_attention_forward(
561
+ self,
562
+ query_states,
563
+ key_states,
564
+ value_states,
565
+ attention_mask,
566
+ query_length,
567
+ dropout=0.0,
568
+ softmax_scale=None,
569
+ use_sliding_windows=False,
570
+ ):
571
+ """
572
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
573
+ first unpad the input, then computes the attention scores and pad the final attention scores.
574
+
575
+ Args:
576
+ query_states (`torch.Tensor`):
577
+ Input query states to be passed to Flash Attention API
578
+ key_states (`torch.Tensor`):
579
+ Input key states to be passed to Flash Attention API
580
+ value_states (`torch.Tensor`):
581
+ Input value states to be passed to Flash Attention API
582
+ attention_mask (`torch.Tensor`):
583
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
584
+ position of padding tokens and 1 for the position of non-padding tokens.
585
+ dropout (`int`, *optional*):
586
+ Attention dropout
587
+ softmax_scale (`float`, *optional*):
588
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
589
+ use_sliding_windows (`bool`, *optional*):
590
+ Whether to activate sliding window attention.
591
+ """
592
+ if not self._flash_attn_uses_top_left_mask:
593
+ causal = self.is_causal
594
+ else:
595
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
596
+ causal = self.is_causal and query_length != 1
597
+
598
+ # Contains at least one padding token in the sequence
599
+ if attention_mask is not None:
600
+ batch_size = query_states.shape[0]
601
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
602
+ query_states, key_states, value_states, attention_mask, query_length
603
+ )
604
+
605
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
606
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
607
+
608
+ if not use_sliding_windows:
609
+ attn_output_unpad = flash_attn_varlen_func(
610
+ query_states,
611
+ key_states,
612
+ value_states,
613
+ cu_seqlens_q=cu_seqlens_q,
614
+ cu_seqlens_k=cu_seqlens_k,
615
+ max_seqlen_q=max_seqlen_in_batch_q,
616
+ max_seqlen_k=max_seqlen_in_batch_k,
617
+ dropout_p=dropout,
618
+ softmax_scale=softmax_scale,
619
+ causal=causal,
620
+ )
621
+ else:
622
+ attn_output_unpad = flash_attn_varlen_func(
623
+ query_states,
624
+ key_states,
625
+ value_states,
626
+ cu_seqlens_q=cu_seqlens_q,
627
+ cu_seqlens_k=cu_seqlens_k,
628
+ max_seqlen_q=max_seqlen_in_batch_q,
629
+ max_seqlen_k=max_seqlen_in_batch_k,
630
+ dropout_p=dropout,
631
+ softmax_scale=softmax_scale,
632
+ causal=causal,
633
+ window_size=(self.config.sliding_window, self.config.sliding_window),
634
+ )
635
+
636
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
637
+ else:
638
+ if not use_sliding_windows:
639
+ attn_output = flash_attn_func(
640
+ query_states,
641
+ key_states,
642
+ value_states,
643
+ dropout,
644
+ softmax_scale=softmax_scale,
645
+ causal=causal,
646
+ )
647
+ else:
648
+ attn_output = flash_attn_func(
649
+ query_states,
650
+ key_states,
651
+ value_states,
652
+ dropout,
653
+ softmax_scale=softmax_scale,
654
+ causal=causal,
655
+ window_size=(self.config.sliding_window, self.config.sliding_window),
656
+ )
657
+
658
+ return attn_output
659
+
660
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
661
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
662
+
663
+ # On the first iteration we need to properly re-create the padding mask
664
+ # by slicing it on the proper place
665
+ if kv_seq_len != attention_mask.shape[-1]:
666
+ attention_mask_num_tokens = attention_mask.shape[-1]
667
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
668
+
669
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
670
+
671
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
672
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
673
+
674
+ if query_length == kv_seq_len:
675
+ query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
676
+ cu_seqlens_q = cu_seqlens_k
677
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
678
+ indices_q = indices_k
679
+ elif query_length == 1:
680
+ max_seqlen_in_batch_q = 1
681
+ cu_seqlens_q = torch.arange(
682
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
683
+ ) # There is a memcpy here, that is very bad.
684
+ indices_q = cu_seqlens_q[:-1]
685
+ query_layer = query_layer.squeeze(1)
686
+ else:
687
+ # The -q_len: slice assumes left padding.
688
+ attention_mask = attention_mask[:, -query_length:]
689
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
690
+
691
+ return (
692
+ query_layer,
693
+ key_layer,
694
+ value_layer,
695
+ indices_q,
696
+ (cu_seqlens_q, cu_seqlens_k),
697
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
698
+ )
699
+
700
+
701
+ # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mixtral
702
+ class MixtralSdpaAttention(MixtralAttention):
703
+ """
704
+ Mixtral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
705
+ `MixtralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
706
+ SDPA API.
707
+ """
708
+
709
+ # Adapted from MixtralAttention.forward
710
+ def forward(
711
+ self,
712
+ hidden_states: torch.Tensor,
713
+ attention_mask: Optional[torch.Tensor] = None,
714
+ position_ids: Optional[torch.LongTensor] = None,
715
+ past_key_value: Optional[Cache] = None,
716
+ output_attentions: bool = False,
717
+ use_cache: bool = False,
718
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
719
+ if output_attentions:
720
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
721
+ logger.warning_once(
722
+ "MixtralModel is using MixtralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
723
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
724
+ )
725
+ return super().forward(
726
+ hidden_states=hidden_states,
727
+ attention_mask=attention_mask,
728
+ position_ids=position_ids,
729
+ past_key_value=past_key_value,
730
+ output_attentions=output_attentions,
731
+ use_cache=use_cache,
732
+ )
733
+
734
+ bsz, q_len, _ = hidden_states.size()
735
+
736
+ query_states = self.q_proj(hidden_states)
737
+ key_states = self.k_proj(hidden_states)
738
+ value_states = self.v_proj(hidden_states)
739
+
740
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
741
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
742
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
743
+
744
+ kv_seq_len = key_states.shape[-2]
745
+ if past_key_value is not None:
746
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
747
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
748
+
749
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
750
+
751
+ if past_key_value is not None:
752
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
753
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
754
+
755
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
756
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
757
+
758
+ if attention_mask is not None:
759
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
760
+ raise ValueError(
761
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
762
+ )
763
+
764
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
765
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
766
+ if query_states.device.type == "cuda" and attention_mask is not None:
767
+ query_states = query_states.contiguous()
768
+ key_states = key_states.contiguous()
769
+ value_states = value_states.contiguous()
770
+
771
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
772
+ query_states,
773
+ key_states,
774
+ value_states,
775
+ attn_mask=attention_mask,
776
+ dropout_p=self.attention_dropout if self.training else 0.0,
777
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
778
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
779
+ )
780
+
781
+ attn_output = attn_output.transpose(1, 2).contiguous()
782
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
783
+
784
+ attn_output = self.o_proj(attn_output)
785
+
786
+ return attn_output, None, past_key_value
787
+
788
+
789
+ MIXTRAL_ATTENTION_CLASSES = {
790
+ "eager": MixtralAttention,
791
+ "flash_attention_2": MixtralFlashAttention2,
792
+ "sdpa": MixtralSdpaAttention,
793
+ }
794
+
795
+
796
+ class MixtralBLockSparseTop2MLP(nn.Module):
797
+ def __init__(self, config: MixtralConfig):
798
+ super().__init__()
799
+ self.ffn_dim = config.intermediate_size
800
+ self.hidden_dim = config.hidden_size
801
+
802
+ self.w1 = QuantizedLinear(self.hidden_dim, self.ffn_dim, bias=False, **config.aqlm)
803
+ self.w2 = QuantizedLinear(self.ffn_dim, self.hidden_dim, bias=False, **config.aqlm)
804
+ self.w3 = QuantizedLinear(self.hidden_dim, self.ffn_dim, bias=False, **config.aqlm)
805
+
806
+ self.act_fn = ACT2FN[config.hidden_act]
807
+
808
+ def forward(self, hidden_states):
809
+ current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
810
+ current_hidden_states = self.w2(current_hidden_states)
811
+ return current_hidden_states
812
+
813
+
814
+ class MixtralSparseMoeBlock(nn.Module):
815
+ """
816
+ This implementation is
817
+ strictly equivalent to standard MoE with full capacity (no
818
+ dropped tokens). It's faster since it formulates MoE operations
819
+ in terms of block-sparse operations to accomodate imbalanced
820
+ assignments of tokens to experts, whereas standard MoE either
821
+ (1) drop tokens at the cost of reduced performance or (2) set
822
+ capacity factor to number of experts and thus waste computation
823
+ and memory on padding.
824
+ """
825
+
826
+ def __init__(self, config):
827
+ super().__init__()
828
+ self.hidden_dim = config.hidden_size
829
+ self.ffn_dim = config.intermediate_size
830
+ self.num_experts = config.num_local_experts
831
+ self.top_k = config.num_experts_per_tok
832
+
833
+ # gating
834
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
835
+
836
+ self.experts = nn.ModuleList([MixtralBLockSparseTop2MLP(config) for _ in range(self.num_experts)])
837
+
838
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
839
+ """ """
840
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
841
+ hidden_states = hidden_states.view(-1, hidden_dim)
842
+ # router_logits: (batch * sequence_length, n_experts)
843
+ router_logits = self.gate(hidden_states)
844
+
845
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
846
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
847
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
848
+ # we cast back to the input dtype
849
+ routing_weights = routing_weights.to(hidden_states.dtype)
850
+
851
+ final_hidden_states = torch.zeros(
852
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
853
+ )
854
+
855
+ # One hot encode the selected experts to create an expert mask
856
+ # this will be used to easily index which expert is going to be sollicitated
857
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
858
+
859
+ # Loop over all available experts in the model and perform the computation on each expert
860
+ for expert_idx in range(self.num_experts):
861
+ expert_layer = self.experts[expert_idx]
862
+ idx, top_x = torch.where(expert_mask[expert_idx])
863
+
864
+ if top_x.shape[0] == 0:
865
+ continue
866
+
867
+ # in torch it is faster to index using lists than torch tensors
868
+ top_x_list = top_x.tolist()
869
+ idx_list = idx.tolist()
870
+
871
+ # Index the correct hidden states and compute the expert hidden state for
872
+ # the current expert. We need to make sure to multiply the output hidden
873
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
874
+ current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
875
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
876
+
877
+ # However `index_add_` only support torch tensors for indexing so we'll use
878
+ # the `top_x` tensor here.
879
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
880
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
881
+ return final_hidden_states, router_logits
882
+
883
+
884
+ class MixtralDecoderLayer(nn.Module):
885
+ def __init__(self, config: MixtralConfig, layer_idx: int):
886
+ super().__init__()
887
+ self.hidden_size = config.hidden_size
888
+
889
+ self.self_attn = MIXTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
890
+
891
+ self.block_sparse_moe = MixtralSparseMoeBlock(config)
892
+ self.input_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
893
+ self.post_attention_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
894
+
895
+ def forward(
896
+ self,
897
+ hidden_states: torch.Tensor,
898
+ attention_mask: Optional[torch.Tensor] = None,
899
+ position_ids: Optional[torch.LongTensor] = None,
900
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
901
+ output_attentions: Optional[bool] = False,
902
+ output_router_logits: Optional[bool] = False,
903
+ use_cache: Optional[bool] = False,
904
+ **kwargs,
905
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
906
+ if "padding_mask" in kwargs:
907
+ warnings.warn(
908
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
909
+ )
910
+ """
911
+ Args:
912
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
913
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
914
+ `(batch, sequence_length)` where padding elements are indicated by 0.
915
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
916
+ output_attentions (`bool`, *optional*):
917
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
918
+ returned tensors for more detail.
919
+ output_router_logits (`bool`, *optional*):
920
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
921
+ should not be returned during inference.
922
+ use_cache (`bool`, *optional*):
923
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
924
+ (see `past_key_values`).
925
+ """
926
+
927
+ residual = hidden_states
928
+
929
+ hidden_states = self.input_layernorm(hidden_states)
930
+
931
+ # Self Attention
932
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
933
+ hidden_states=hidden_states,
934
+ attention_mask=attention_mask,
935
+ position_ids=position_ids,
936
+ past_key_value=past_key_value,
937
+ output_attentions=output_attentions,
938
+ use_cache=use_cache,
939
+ )
940
+ hidden_states = residual + hidden_states
941
+
942
+ # Fully Connected
943
+ residual = hidden_states
944
+ hidden_states = self.post_attention_layernorm(hidden_states)
945
+ hidden_states, router_logits = self.block_sparse_moe(hidden_states)
946
+ hidden_states = residual + hidden_states
947
+
948
+ outputs = (hidden_states,)
949
+
950
+ if output_attentions:
951
+ outputs += (self_attn_weights,)
952
+
953
+ if use_cache:
954
+ outputs += (present_key_value,)
955
+
956
+ if output_router_logits:
957
+ outputs += (router_logits,)
958
+
959
+ return outputs
960
+
961
+
962
+ MIXTRAL_START_DOCSTRING = r"""
963
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
964
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
965
+ etc.)
966
+
967
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
968
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
969
+ and behavior.
970
+
971
+ Parameters:
972
+ config ([`MixtralConfig`]):
973
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
974
+ load the weights associated with the model, only the configuration. Check out the
975
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
976
+ """
977
+
978
+
979
+ @add_start_docstrings(
980
+ "The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
981
+ MIXTRAL_START_DOCSTRING,
982
+ )
983
+ # Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Mixtral
984
+ class MixtralPreTrainedModel(PreTrainedModel):
985
+ config_class = MixtralConfig
986
+ base_model_prefix = "model"
987
+ supports_gradient_checkpointing = True
988
+ _no_split_modules = ["MixtralDecoderLayer"]
989
+ _skip_keys_device_placement = "past_key_values"
990
+ _supports_flash_attn_2 = True
991
+ _supports_sdpa = True
992
+ _supports_cache_class = True
993
+
994
+ def _init_weights(self, module):
995
+ std = self.config.initializer_range
996
+ if isinstance(module, nn.Linear):
997
+ module.weight.data.normal_(mean=0.0, std=std)
998
+ if module.bias is not None:
999
+ module.bias.data.zero_()
1000
+ elif isinstance(module, nn.Embedding):
1001
+ module.weight.data.normal_(mean=0.0, std=std)
1002
+ if module.padding_idx is not None:
1003
+ module.weight.data[module.padding_idx].zero_()
1004
+
1005
+
1006
+ MIXTRAL_INPUTS_DOCSTRING = r"""
1007
+ Args:
1008
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1009
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1010
+ it.
1011
+
1012
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1013
+ [`PreTrainedTokenizer.__call__`] for details.
1014
+
1015
+ [What are input IDs?](../glossary#input-ids)
1016
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1017
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1018
+
1019
+ - 1 for tokens that are **not masked**,
1020
+ - 0 for tokens that are **masked**.
1021
+
1022
+ [What are attention masks?](../glossary#attention-mask)
1023
+
1024
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1025
+ [`PreTrainedTokenizer.__call__`] for details.
1026
+
1027
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
1028
+ `past_key_values`).
1029
+
1030
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1031
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1032
+ information on the default strategy.
1033
+
1034
+ - 1 indicates the head is **not masked**,
1035
+ - 0 indicates the head is **masked**.
1036
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1037
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1038
+ config.n_positions - 1]`.
1039
+
1040
+ [What are position IDs?](../glossary#position-ids)
1041
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
1042
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
1043
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
1044
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
1045
+
1046
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1047
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1048
+
1049
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1050
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1051
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1052
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1053
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1054
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1055
+ model's internal embedding lookup matrix.
1056
+ use_cache (`bool`, *optional*):
1057
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1058
+ `past_key_values`).
1059
+ output_attentions (`bool`, *optional*):
1060
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1061
+ tensors for more detail.
1062
+ output_hidden_states (`bool`, *optional*):
1063
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1064
+ more detail.
1065
+ output_router_logits (`bool`, *optional*):
1066
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
1067
+ should not be returned during inference.
1068
+ return_dict (`bool`, *optional*):
1069
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1070
+ """
1071
+
1072
+
1073
+ @add_start_docstrings(
1074
+ "The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
1075
+ MIXTRAL_START_DOCSTRING,
1076
+ )
1077
+ # Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->Mixtral
1078
+ class MixtralModel(MixtralPreTrainedModel):
1079
+ """
1080
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`]
1081
+
1082
+ Args:
1083
+ config: MixtralConfig
1084
+ """
1085
+
1086
+ def __init__(self, config: MixtralConfig):
1087
+ super().__init__(config)
1088
+ self.padding_idx = config.pad_token_id
1089
+ self.vocab_size = config.vocab_size
1090
+
1091
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1092
+ self.layers = nn.ModuleList(
1093
+ [MixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1094
+ )
1095
+ self._attn_implementation = config._attn_implementation
1096
+ self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1097
+
1098
+ self.gradient_checkpointing = False
1099
+ # Initialize weights and apply final processing
1100
+ self.post_init()
1101
+
1102
+ def get_input_embeddings(self):
1103
+ return self.embed_tokens
1104
+
1105
+ def set_input_embeddings(self, value):
1106
+ self.embed_tokens = value
1107
+
1108
+ # Ignore copy
1109
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
1110
+ def forward(
1111
+ self,
1112
+ input_ids: torch.LongTensor = None,
1113
+ attention_mask: Optional[torch.Tensor] = None,
1114
+ position_ids: Optional[torch.LongTensor] = None,
1115
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1116
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1117
+ use_cache: Optional[bool] = None,
1118
+ output_attentions: Optional[bool] = None,
1119
+ output_hidden_states: Optional[bool] = None,
1120
+ output_router_logits: Optional[bool] = None,
1121
+ return_dict: Optional[bool] = None,
1122
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
1123
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1124
+ output_router_logits = (
1125
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1126
+ )
1127
+ output_hidden_states = (
1128
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1129
+ )
1130
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1131
+
1132
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1133
+
1134
+ # retrieve input_ids and inputs_embeds
1135
+ if input_ids is not None and inputs_embeds is not None:
1136
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1137
+ elif input_ids is not None:
1138
+ batch_size, seq_length = input_ids.shape
1139
+ elif inputs_embeds is not None:
1140
+ batch_size, seq_length, _ = inputs_embeds.shape
1141
+ else:
1142
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1143
+
1144
+ past_key_values_length = 0
1145
+
1146
+ if self.gradient_checkpointing and self.training:
1147
+ if use_cache:
1148
+ logger.warning_once(
1149
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1150
+ )
1151
+ use_cache = False
1152
+
1153
+ if use_cache:
1154
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1155
+ if use_legacy_cache:
1156
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1157
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1158
+
1159
+ if position_ids is None:
1160
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1161
+ position_ids = torch.arange(
1162
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1163
+ )
1164
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1165
+ else:
1166
+ position_ids = position_ids.view(-1, seq_length).long()
1167
+
1168
+ if inputs_embeds is None:
1169
+ inputs_embeds = self.embed_tokens(input_ids)
1170
+
1171
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1172
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1173
+ if is_padding_right:
1174
+ raise ValueError(
1175
+ "You are attempting to perform batched generation with padding_side='right'"
1176
+ " this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to "
1177
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1178
+ )
1179
+
1180
+ if self._attn_implementation == "flash_attention_2":
1181
+ # 2d mask is passed through the layers
1182
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1183
+ elif self._attn_implementation == "sdpa" and not output_attentions:
1184
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1185
+ # the manual implementation that requires a 4D causal mask in all cases.
1186
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1187
+ attention_mask,
1188
+ (batch_size, seq_length),
1189
+ inputs_embeds,
1190
+ past_key_values_length,
1191
+ )
1192
+ else:
1193
+ # 4d mask is passed through the layers
1194
+ attention_mask = _prepare_4d_causal_attention_mask(
1195
+ attention_mask,
1196
+ (batch_size, seq_length),
1197
+ inputs_embeds,
1198
+ past_key_values_length,
1199
+ sliding_window=self.config.sliding_window,
1200
+ )
1201
+
1202
+ hidden_states = inputs_embeds
1203
+
1204
+ # decoder layers
1205
+ all_hidden_states = () if output_hidden_states else None
1206
+ all_self_attns = () if output_attentions else None
1207
+ all_router_logits = () if output_router_logits else None
1208
+ next_decoder_cache = None
1209
+
1210
+ for decoder_layer in self.layers:
1211
+ if output_hidden_states:
1212
+ all_hidden_states += (hidden_states,)
1213
+
1214
+ if self.gradient_checkpointing and self.training:
1215
+ layer_outputs = self._gradient_checkpointing_func(
1216
+ decoder_layer.__call__,
1217
+ hidden_states,
1218
+ attention_mask,
1219
+ position_ids,
1220
+ past_key_values,
1221
+ output_attentions,
1222
+ output_router_logits,
1223
+ use_cache,
1224
+ )
1225
+ else:
1226
+ layer_outputs = decoder_layer(
1227
+ hidden_states,
1228
+ attention_mask=attention_mask,
1229
+ position_ids=position_ids,
1230
+ past_key_value=past_key_values,
1231
+ output_attentions=output_attentions,
1232
+ output_router_logits=output_router_logits,
1233
+ use_cache=use_cache,
1234
+ )
1235
+
1236
+ hidden_states = layer_outputs[0]
1237
+
1238
+ if use_cache:
1239
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1240
+
1241
+ if output_attentions:
1242
+ all_self_attns += (layer_outputs[1],)
1243
+
1244
+ if output_router_logits:
1245
+ all_router_logits += (layer_outputs[-1],)
1246
+
1247
+ hidden_states = self.norm(hidden_states)
1248
+
1249
+ # add hidden states from the last decoder layer
1250
+ if output_hidden_states:
1251
+ all_hidden_states += (hidden_states,)
1252
+
1253
+ next_cache = None
1254
+ if use_cache:
1255
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1256
+
1257
+ if not return_dict:
1258
+ return tuple(
1259
+ v
1260
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
1261
+ if v is not None
1262
+ )
1263
+ return MoeModelOutputWithPast(
1264
+ last_hidden_state=hidden_states,
1265
+ past_key_values=next_cache,
1266
+ hidden_states=all_hidden_states,
1267
+ attentions=all_self_attns,
1268
+ router_logits=all_router_logits,
1269
+ )
1270
+
1271
+
1272
+ class MixtralForCausalLM(MixtralPreTrainedModel):
1273
+ _tied_weights_keys = ["lm_head.weight"]
1274
+
1275
+ def __init__(self, config):
1276
+ super().__init__(config)
1277
+ self.model = MixtralModel(config)
1278
+ self.vocab_size = config.vocab_size
1279
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1280
+ self.router_aux_loss_coef = config.router_aux_loss_coef
1281
+ self.num_experts = config.num_local_experts
1282
+ self.num_experts_per_tok = config.num_experts_per_tok
1283
+ # Initialize weights and apply final processing
1284
+ self.post_init()
1285
+
1286
+ def get_input_embeddings(self):
1287
+ return self.model.embed_tokens
1288
+
1289
+ def set_input_embeddings(self, value):
1290
+ self.model.embed_tokens = value
1291
+
1292
+ def get_output_embeddings(self):
1293
+ return self.lm_head
1294
+
1295
+ def set_output_embeddings(self, new_embeddings):
1296
+ self.lm_head = new_embeddings
1297
+
1298
+ def set_decoder(self, decoder):
1299
+ self.model = decoder
1300
+
1301
+ def get_decoder(self):
1302
+ return self.model
1303
+
1304
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
1305
+ @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1306
+ # Ignore copy
1307
+ def forward(
1308
+ self,
1309
+ input_ids: torch.LongTensor = None,
1310
+ attention_mask: Optional[torch.Tensor] = None,
1311
+ position_ids: Optional[torch.LongTensor] = None,
1312
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1313
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1314
+ labels: Optional[torch.LongTensor] = None,
1315
+ use_cache: Optional[bool] = None,
1316
+ output_attentions: Optional[bool] = None,
1317
+ output_hidden_states: Optional[bool] = None,
1318
+ output_router_logits: Optional[bool] = None,
1319
+ return_dict: Optional[bool] = None,
1320
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
1321
+ r"""
1322
+ Args:
1323
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1324
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1325
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1326
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1327
+
1328
+ Returns:
1329
+
1330
+ Example:
1331
+
1332
+ ```python
1333
+ >>> from transformers import AutoTokenizer, MixtralForCausalLM
1334
+
1335
+ >>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
1336
+ >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
1337
+
1338
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1339
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1340
+
1341
+ >>> # Generate
1342
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1343
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1344
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1345
+ ```"""
1346
+
1347
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1348
+ output_router_logits = (
1349
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1350
+ )
1351
+
1352
+ output_hidden_states = (
1353
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1354
+ )
1355
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1356
+
1357
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1358
+ outputs = self.model(
1359
+ input_ids=input_ids,
1360
+ attention_mask=attention_mask,
1361
+ position_ids=position_ids,
1362
+ past_key_values=past_key_values,
1363
+ inputs_embeds=inputs_embeds,
1364
+ use_cache=use_cache,
1365
+ output_attentions=output_attentions,
1366
+ output_hidden_states=output_hidden_states,
1367
+ output_router_logits=output_router_logits,
1368
+ return_dict=return_dict,
1369
+ )
1370
+
1371
+ hidden_states = outputs[0]
1372
+ logits = self.lm_head(hidden_states)
1373
+ logits = logits.float()
1374
+
1375
+ loss = None
1376
+ if labels is not None:
1377
+ # Shift so that tokens < n predict n
1378
+ shift_logits = logits[..., :-1, :].contiguous()
1379
+ shift_labels = labels[..., 1:].contiguous()
1380
+ # Flatten the tokens
1381
+ loss_fct = CrossEntropyLoss()
1382
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1383
+ shift_labels = shift_labels.view(-1)
1384
+ # Enable model parallelism
1385
+ shift_labels = shift_labels.to(shift_logits.device)
1386
+ loss = loss_fct(shift_logits, shift_labels)
1387
+
1388
+ aux_loss = None
1389
+ if output_router_logits:
1390
+ aux_loss = load_balancing_loss_func(
1391
+ outputs.router_logits if return_dict else outputs[-1],
1392
+ self.num_experts,
1393
+ self.num_experts_per_tok,
1394
+ attention_mask,
1395
+ )
1396
+ if labels is not None:
1397
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
1398
+
1399
+ if not return_dict:
1400
+ output = (logits,) + outputs[1:]
1401
+ if output_router_logits:
1402
+ output = (aux_loss,) + output
1403
+ return (loss,) + output if loss is not None else output
1404
+
1405
+ return MoeCausalLMOutputWithPast(
1406
+ loss=loss,
1407
+ aux_loss=aux_loss,
1408
+ logits=logits,
1409
+ past_key_values=outputs.past_key_values,
1410
+ hidden_states=outputs.hidden_states,
1411
+ attentions=outputs.attentions,
1412
+ router_logits=outputs.router_logits,
1413
+ )
1414
+
1415
+ def prepare_inputs_for_generation(
1416
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1417
+ ):
1418
+ # Omit tokens covered by past_key_values
1419
+ if past_key_values is not None:
1420
+ if isinstance(past_key_values, Cache):
1421
+ cache_length = past_key_values.get_seq_length()
1422
+ past_length = past_key_values.seen_tokens
1423
+ max_cache_length = past_key_values.get_max_length()
1424
+ else:
1425
+ cache_length = past_length = past_key_values[0][0].shape[2]
1426
+ max_cache_length = None
1427
+
1428
+ # Keep only the unprocessed tokens:
1429
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1430
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1431
+ # input)
1432
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1433
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1434
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1435
+ # input_ids based on the past_length.
1436
+ elif past_length < input_ids.shape[1]:
1437
+ input_ids = input_ids[:, past_length:]
1438
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1439
+
1440
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1441
+ if (
1442
+ max_cache_length is not None
1443
+ and attention_mask is not None
1444
+ and cache_length + input_ids.shape[1] > max_cache_length
1445
+ ):
1446
+ attention_mask = attention_mask[:, -max_cache_length:]
1447
+
1448
+ position_ids = kwargs.get("position_ids", None)
1449
+ if attention_mask is not None and position_ids is None:
1450
+ # create position_ids on the fly for batch generation
1451
+ position_ids = attention_mask.long().cumsum(-1) - 1
1452
+ position_ids.masked_fill_(attention_mask == 0, 1)
1453
+ if past_key_values:
1454
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1455
+
1456
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1457
+ if inputs_embeds is not None and past_key_values is None:
1458
+ model_inputs = {"inputs_embeds": inputs_embeds}
1459
+ else:
1460
+ model_inputs = {"input_ids": input_ids}
1461
+
1462
+ model_inputs.update(
1463
+ {
1464
+ "position_ids": position_ids,
1465
+ "past_key_values": past_key_values,
1466
+ "use_cache": kwargs.get("use_cache"),
1467
+ "attention_mask": attention_mask,
1468
+ }
1469
+ )
1470
+ return model_inputs
1471
+
1472
+ @staticmethod
1473
+ def _reorder_cache(past_key_values, beam_idx):
1474
+ reordered_past = ()
1475
+ for layer_past in past_key_values:
1476
+ reordered_past += (
1477
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1478
+ )
1479
+ return reordered_past
1480
+
1481
+
1482
+ @add_start_docstrings(
1483
+ """
1484
+ The Mixtral Model transformer with a sequence classification head on top (linear layer).
1485
+
1486
+ [`MixtralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1487
+ (e.g. GPT-2) do.
1488
+
1489
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1490
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1491
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1492
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1493
+ each row of the batch).
1494
+ """,
1495
+ MIXTRAL_START_DOCSTRING,
1496
+ )
1497
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mixtral, LLAMA->MIXTRAL
1498
+ class MixtralForSequenceClassification(MixtralPreTrainedModel):
1499
+ def __init__(self, config):
1500
+ super().__init__(config)
1501
+ self.num_labels = config.num_labels
1502
+ self.model = MixtralModel(config)
1503
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1504
+
1505
+ # Initialize weights and apply final processing
1506
+ self.post_init()
1507
+
1508
+ def get_input_embeddings(self):
1509
+ return self.model.embed_tokens
1510
+
1511
+ def set_input_embeddings(self, value):
1512
+ self.model.embed_tokens = value
1513
+
1514
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
1515
+ def forward(
1516
+ self,
1517
+ input_ids: torch.LongTensor = None,
1518
+ attention_mask: Optional[torch.Tensor] = None,
1519
+ position_ids: Optional[torch.LongTensor] = None,
1520
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1521
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1522
+ labels: Optional[torch.LongTensor] = None,
1523
+ use_cache: Optional[bool] = None,
1524
+ output_attentions: Optional[bool] = None,
1525
+ output_hidden_states: Optional[bool] = None,
1526
+ return_dict: Optional[bool] = None,
1527
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1528
+ r"""
1529
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1530
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1531
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1532
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1533
+ """
1534
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1535
+
1536
+ transformer_outputs = self.model(
1537
+ input_ids,
1538
+ attention_mask=attention_mask,
1539
+ position_ids=position_ids,
1540
+ past_key_values=past_key_values,
1541
+ inputs_embeds=inputs_embeds,
1542
+ use_cache=use_cache,
1543
+ output_attentions=output_attentions,
1544
+ output_hidden_states=output_hidden_states,
1545
+ return_dict=return_dict,
1546
+ )
1547
+ hidden_states = transformer_outputs[0]
1548
+ logits = self.score(hidden_states)
1549
+
1550
+ if input_ids is not None:
1551
+ batch_size = input_ids.shape[0]
1552
+ else:
1553
+ batch_size = inputs_embeds.shape[0]
1554
+
1555
+ if self.config.pad_token_id is None and batch_size != 1:
1556
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1557
+ if self.config.pad_token_id is None:
1558
+ sequence_lengths = -1
1559
+ else:
1560
+ if input_ids is not None:
1561
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1562
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1563
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1564
+ sequence_lengths = sequence_lengths.to(logits.device)
1565
+ else:
1566
+ sequence_lengths = -1
1567
+
1568
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1569
+
1570
+ loss = None
1571
+ if labels is not None:
1572
+ labels = labels.to(logits.device)
1573
+ if self.config.problem_type is None:
1574
+ if self.num_labels == 1:
1575
+ self.config.problem_type = "regression"
1576
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1577
+ self.config.problem_type = "single_label_classification"
1578
+ else:
1579
+ self.config.problem_type = "multi_label_classification"
1580
+
1581
+ if self.config.problem_type == "regression":
1582
+ loss_fct = MSELoss()
1583
+ if self.num_labels == 1:
1584
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1585
+ else:
1586
+ loss = loss_fct(pooled_logits, labels)
1587
+ elif self.config.problem_type == "single_label_classification":
1588
+ loss_fct = CrossEntropyLoss()
1589
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1590
+ elif self.config.problem_type == "multi_label_classification":
1591
+ loss_fct = BCEWithLogitsLoss()
1592
+ loss = loss_fct(pooled_logits, labels)
1593
+ if not return_dict:
1594
+ output = (pooled_logits,) + transformer_outputs[1:]
1595
+ return ((loss,) + output) if loss is not None else output
1596
+
1597
+ return SequenceClassifierOutputWithPast(
1598
+ loss=loss,
1599
+ logits=pooled_logits,
1600
+ past_key_values=transformer_outputs.past_key_values,
1601
+ hidden_states=transformer_outputs.hidden_states,
1602
+ attentions=transformer_outputs.attentions,
1603
+ )