Andrei Panferov
commited on
Commit
·
115e749
1
Parent(s):
dfb8eb3
newer inference
Browse files- config.json +77 -19
- inference.py +73 -23
config.json
CHANGED
@@ -1,34 +1,92 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
|
4 |
-
],
|
5 |
-
"auto_map": {
|
6 |
-
"AutoConfig": "configuration_llama_aqlm.LlamaConfig",
|
7 |
-
"AutoModelForCausalLM": "modeling_llama_aqlm.LlamaForCausalLM"
|
8 |
-
},
|
9 |
-
"bos_token_id": 1,
|
10 |
-
"eos_token_id": 2,
|
11 |
-
"hidden_act": "silu",
|
12 |
"hidden_size": 4096,
|
13 |
-
"initializer_range": 0.02,
|
14 |
"intermediate_size": 11008,
|
15 |
-
"max_position_embeddings": 4096,
|
16 |
-
"model_type": "llama_aqlm",
|
17 |
-
"num_attention_heads": 32,
|
18 |
"num_hidden_layers": 32,
|
|
|
19 |
"num_key_value_heads": 32,
|
20 |
-
"
|
|
|
21 |
"rms_norm_eps": 1e-05,
|
|
|
|
|
|
|
22 |
"rope_scaling": null,
|
23 |
-
"
|
|
|
|
|
|
|
|
|
|
|
24 |
"torch_dtype": "float16",
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
"aqlm": {
|
29 |
"nbits_per_codebook": 16,
|
30 |
"num_codebooks": 1,
|
31 |
"out_group_size": 1,
|
32 |
"in_group_size": 8
|
|
|
|
|
|
|
|
|
|
|
33 |
}
|
34 |
}
|
|
|
1 |
{
|
2 |
+
"vocab_size": 32000,
|
3 |
+
"max_position_embeddings": 4096,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"hidden_size": 4096,
|
|
|
5 |
"intermediate_size": 11008,
|
|
|
|
|
|
|
6 |
"num_hidden_layers": 32,
|
7 |
+
"num_attention_heads": 32,
|
8 |
"num_key_value_heads": 32,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"initializer_range": 0.02,
|
11 |
"rms_norm_eps": 1e-05,
|
12 |
+
"pretraining_tp": 1,
|
13 |
+
"use_cache": true,
|
14 |
+
"rope_theta": 10000.0,
|
15 |
"rope_scaling": null,
|
16 |
+
"attention_bias": false,
|
17 |
+
"attention_dropout": 0.0,
|
18 |
+
"return_dict": true,
|
19 |
+
"output_hidden_states": false,
|
20 |
+
"output_attentions": false,
|
21 |
+
"torchscript": false,
|
22 |
"torch_dtype": "float16",
|
23 |
+
"use_bfloat16": false,
|
24 |
+
"tf_legacy_loss": false,
|
25 |
+
"pruned_heads": {},
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"is_encoder_decoder": false,
|
28 |
+
"is_decoder": false,
|
29 |
+
"cross_attention_hidden_size": null,
|
30 |
+
"add_cross_attention": false,
|
31 |
+
"tie_encoder_decoder": false,
|
32 |
+
"max_length": 20,
|
33 |
+
"min_length": 0,
|
34 |
+
"do_sample": false,
|
35 |
+
"early_stopping": false,
|
36 |
+
"num_beams": 1,
|
37 |
+
"num_beam_groups": 1,
|
38 |
+
"diversity_penalty": 0.0,
|
39 |
+
"temperature": 1.0,
|
40 |
+
"top_k": 50,
|
41 |
+
"top_p": 1.0,
|
42 |
+
"typical_p": 1.0,
|
43 |
+
"repetition_penalty": 1.0,
|
44 |
+
"length_penalty": 1.0,
|
45 |
+
"no_repeat_ngram_size": 0,
|
46 |
+
"encoder_no_repeat_ngram_size": 0,
|
47 |
+
"bad_words_ids": null,
|
48 |
+
"num_return_sequences": 1,
|
49 |
+
"chunk_size_feed_forward": 0,
|
50 |
+
"output_scores": false,
|
51 |
+
"return_dict_in_generate": false,
|
52 |
+
"forced_bos_token_id": null,
|
53 |
+
"forced_eos_token_id": null,
|
54 |
+
"remove_invalid_values": false,
|
55 |
+
"exponential_decay_length_penalty": null,
|
56 |
+
"suppress_tokens": null,
|
57 |
+
"begin_suppress_tokens": null,
|
58 |
+
"architectures": [
|
59 |
+
"LlamaForCausalLM"
|
60 |
+
],
|
61 |
+
"finetuning_task": null,
|
62 |
+
"id2label": {
|
63 |
+
"0": "LABEL_0",
|
64 |
+
"1": "LABEL_1"
|
65 |
+
},
|
66 |
+
"label2id": {
|
67 |
+
"LABEL_0": 0,
|
68 |
+
"LABEL_1": 1
|
69 |
+
},
|
70 |
+
"tokenizer_class": null,
|
71 |
+
"prefix": null,
|
72 |
+
"bos_token_id": 1,
|
73 |
+
"pad_token_id": null,
|
74 |
+
"eos_token_id": 2,
|
75 |
+
"sep_token_id": null,
|
76 |
+
"decoder_start_token_id": null,
|
77 |
+
"task_specific_params": null,
|
78 |
+
"problem_type": null,
|
79 |
+
"_name_or_path": "",
|
80 |
+
"transformers_version": "4.36.2",
|
81 |
"aqlm": {
|
82 |
"nbits_per_codebook": 16,
|
83 |
"num_codebooks": 1,
|
84 |
"out_group_size": 1,
|
85 |
"in_group_size": 8
|
86 |
+
},
|
87 |
+
"model_type": "llama_aqlm",
|
88 |
+
"auto_map": {
|
89 |
+
"AutoConfig": "configuration_llama_aqlm.LlamaConfig",
|
90 |
+
"AutoModelForCausalLM": "modeling_llama_aqlm.LlamaForCausalLM"
|
91 |
}
|
92 |
}
|
inference.py
CHANGED
@@ -135,7 +135,7 @@ def forward_pass_quantized_linear(
|
|
135 |
bias: Optional[torch.Tensor],
|
136 |
) -> torch.Tensor:
|
137 |
if input.is_cuda:
|
138 |
-
return
|
139 |
else:
|
140 |
dequantized_weight = _dequantize_weight(
|
141 |
unpack_int_data(codes, codebooks.shape[0].bit_length() - 1),
|
@@ -160,7 +160,6 @@ def forward_pass_quantized_linear(
|
|
160 |
"in_group_size",
|
161 |
"num_input_groups",
|
162 |
"num_input_groups_next_power_of_2",
|
163 |
-
"has_bias",
|
164 |
"compute_in_fp32",
|
165 |
],
|
166 |
)
|
@@ -168,7 +167,7 @@ def forward_pass_quantized_linear(
|
|
168 |
def _aqlm_gemv_simple(
|
169 |
input_vec_ptr,
|
170 |
output_vec_ptr,
|
171 |
-
|
172 |
codebooks_ptr,
|
173 |
scales_ptr,
|
174 |
bias_ptr,
|
@@ -181,7 +180,6 @@ def _aqlm_gemv_simple(
|
|
181 |
num_input_groups: tl.constexpr,
|
182 |
num_input_groups_next_power_of_2: tl.constexpr,
|
183 |
compute_in_fp32: tl.constexpr,
|
184 |
-
has_bias: tl.constexpr,
|
185 |
UNUSED: tl.constexpr,
|
186 |
):
|
187 |
# variables ending with "_i" mean "for i-th output unit"
|
@@ -203,7 +201,7 @@ def _aqlm_gemv_simple(
|
|
203 |
# Stage 2: load integer codes for the active row
|
204 |
# [in_features // in_group_size, num_codebooks]
|
205 |
codes_i_ptrs = (
|
206 |
-
|
207 |
+ pid * num_input_groups * num_codebooks
|
208 |
+ tl.arange(0, num_input_groups_next_power_of_2)[:, None] * num_codebooks
|
209 |
+ tl.arange(0, num_codebooks)[None, :]
|
@@ -211,15 +209,12 @@ def _aqlm_gemv_simple(
|
|
211 |
codes_i_mask_1d = tl.arange(0, num_input_groups_next_power_of_2) < num_input_groups
|
212 |
|
213 |
codes_i = tl.load(codes_i_ptrs, mask=codes_i_mask_1d[:, None]) # [in_features//in_group_size, num_codebooks]
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
# ^-- (because codes are int16 tensors that contain uint data)
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
else:
|
222 |
-
codes_i = codes_i.to(tl.int32)
|
223 |
|
224 |
# shift codes_i so that codebooks after 0th point to correct indices in codebooks_ptr
|
225 |
codes_i += tl.arange(0, num_codebooks)[None, :] * codebook_size # aka 2 ** nbits_per_codebook
|
@@ -280,7 +275,7 @@ def aqlm_gemv_simple(
|
|
280 |
assert input_vec.ndim == 2 and input_vec.shape[0] == 1, "do reshape; now!"
|
281 |
assert scales.shape == (out_features // out_group_size, 1, 1, 1)
|
282 |
assert in_features % in_group_size == 0
|
283 |
-
assert codebooks.shape[1]
|
284 |
|
285 |
output_vec = torch.empty(1, out_features, device=device, dtype=dtype)
|
286 |
# 1D launch kernel where each block computes output unit
|
@@ -301,7 +296,6 @@ def aqlm_gemv_simple(
|
|
301 |
num_input_groups,
|
302 |
next_power_of_2(num_input_groups),
|
303 |
compute_in_fp32,
|
304 |
-
bias is not None,
|
305 |
)
|
306 |
|
307 |
return output_vec
|
@@ -315,11 +309,67 @@ def aqlm_gemm_stupid(
|
|
315 |
bias: Optional[torch.Tensor],
|
316 |
compute_in_fp32: bool = True,
|
317 |
):
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
bias: Optional[torch.Tensor],
|
136 |
) -> torch.Tensor:
|
137 |
if input.is_cuda:
|
138 |
+
return triton_matmul(input, codes, codebooks, scales, bias)
|
139 |
else:
|
140 |
dequantized_weight = _dequantize_weight(
|
141 |
unpack_int_data(codes, codebooks.shape[0].bit_length() - 1),
|
|
|
160 |
"in_group_size",
|
161 |
"num_input_groups",
|
162 |
"num_input_groups_next_power_of_2",
|
|
|
163 |
"compute_in_fp32",
|
164 |
],
|
165 |
)
|
|
|
167 |
def _aqlm_gemv_simple(
|
168 |
input_vec_ptr,
|
169 |
output_vec_ptr,
|
170 |
+
codes_ptr,
|
171 |
codebooks_ptr,
|
172 |
scales_ptr,
|
173 |
bias_ptr,
|
|
|
180 |
num_input_groups: tl.constexpr,
|
181 |
num_input_groups_next_power_of_2: tl.constexpr,
|
182 |
compute_in_fp32: tl.constexpr,
|
|
|
183 |
UNUSED: tl.constexpr,
|
184 |
):
|
185 |
# variables ending with "_i" mean "for i-th output unit"
|
|
|
201 |
# Stage 2: load integer codes for the active row
|
202 |
# [in_features // in_group_size, num_codebooks]
|
203 |
codes_i_ptrs = (
|
204 |
+
codes_ptr
|
205 |
+ pid * num_input_groups * num_codebooks
|
206 |
+ tl.arange(0, num_input_groups_next_power_of_2)[:, None] * num_codebooks
|
207 |
+ tl.arange(0, num_codebooks)[None, :]
|
|
|
209 |
codes_i_mask_1d = tl.arange(0, num_input_groups_next_power_of_2) < num_input_groups
|
210 |
|
211 |
codes_i = tl.load(codes_i_ptrs, mask=codes_i_mask_1d[:, None]) # [in_features//in_group_size, num_codebooks]
|
212 |
+
codes_i = codes_i.to(tl.int32)
|
213 |
+
codes_i = (codes_i) + (codes_i < 0) * codebook_size # aka 2 ** nbits_per_codebook
|
214 |
+
# ^-- (because codes are int16 tensors that contain uint data)
|
|
|
215 |
|
216 |
+
# The following alternative does not work:
|
217 |
+
# codes_i = codes_i.to(tl.int32) % codebook_size # aka 2 ** nbits_per_codeboo
|
|
|
|
|
218 |
|
219 |
# shift codes_i so that codebooks after 0th point to correct indices in codebooks_ptr
|
220 |
codes_i += tl.arange(0, num_codebooks)[None, :] * codebook_size # aka 2 ** nbits_per_codebook
|
|
|
275 |
assert input_vec.ndim == 2 and input_vec.shape[0] == 1, "do reshape; now!"
|
276 |
assert scales.shape == (out_features // out_group_size, 1, 1, 1)
|
277 |
assert in_features % in_group_size == 0
|
278 |
+
assert codebooks.shape[1] < 2**32
|
279 |
|
280 |
output_vec = torch.empty(1, out_features, device=device, dtype=dtype)
|
281 |
# 1D launch kernel where each block computes output unit
|
|
|
296 |
num_input_groups,
|
297 |
next_power_of_2(num_input_groups),
|
298 |
compute_in_fp32,
|
|
|
299 |
)
|
300 |
|
301 |
return output_vec
|
|
|
309 |
bias: Optional[torch.Tensor],
|
310 |
compute_in_fp32: bool = True,
|
311 |
):
|
312 |
+
device, dtype = codebooks.device, codebooks.dtype
|
313 |
+
num_codebooks, codebook_size, out_group_size, in_group_size = codebooks.shape
|
314 |
+
in_features = input.shape[1]
|
315 |
+
out_features = codes_i16.shape[0] * out_group_size
|
316 |
+
num_input_groups = codes_i16.shape[1]
|
317 |
+
assert input.ndim == 2
|
318 |
+
assert scales.shape == (out_features // out_group_size, 1, 1, 1)
|
319 |
+
assert in_features % in_group_size == 0
|
320 |
+
assert codebooks.shape[1] < 2**32
|
321 |
+
|
322 |
+
output = torch.empty(input.shape[0], out_features, device=device, dtype=dtype)
|
323 |
+
for i in range(input.shape[0]):
|
324 |
+
# 1D launch kernel where each block computes output unit
|
325 |
+
grid = lambda META: (out_features // out_group_size,)
|
326 |
+
_aqlm_gemv_simple[grid](
|
327 |
+
input[i],
|
328 |
+
output[i],
|
329 |
+
codes_i16,
|
330 |
+
codebooks,
|
331 |
+
scales,
|
332 |
+
bias,
|
333 |
+
in_features,
|
334 |
+
out_features,
|
335 |
+
num_codebooks,
|
336 |
+
codebook_size,
|
337 |
+
out_group_size,
|
338 |
+
in_group_size,
|
339 |
+
num_input_groups,
|
340 |
+
next_power_of_2(num_input_groups),
|
341 |
+
compute_in_fp32,
|
342 |
+
)
|
343 |
+
|
344 |
+
return output
|
345 |
+
|
346 |
+
|
347 |
+
def triton_matmul(
|
348 |
+
input: torch.Tensor,
|
349 |
+
codes: torch.IntTensor,
|
350 |
+
codebooks: torch.Tensor,
|
351 |
+
scales: torch.Tensor,
|
352 |
+
bias: Optional[torch.Tensor],
|
353 |
+
compute_in_fp32: bool = True,
|
354 |
+
) -> torch.Tensor:
|
355 |
+
input_shape = input.shape
|
356 |
+
input = input.reshape(-1, input_shape[-1])
|
357 |
+
|
358 |
+
if input.shape[0] == 1:
|
359 |
+
return aqlm_gemv_simple(
|
360 |
+
input,
|
361 |
+
codes,
|
362 |
+
codebooks,
|
363 |
+
scales,
|
364 |
+
bias,
|
365 |
+
compute_in_fp32,
|
366 |
+
).reshape(input_shape[:-1] + (-1,))
|
367 |
+
else:
|
368 |
+
return aqlm_gemm_stupid(
|
369 |
+
input,
|
370 |
+
codes,
|
371 |
+
codebooks,
|
372 |
+
scales,
|
373 |
+
bias,
|
374 |
+
compute_in_fp32,
|
375 |
+
).reshape(input_shape[:-1] + (-1,))
|