File size: 1,283 Bytes
4f86dc1
d7586e1
4f86dc1
e240cd8
db6d653
 
 
e20bf51
 
 
4f86dc1
 
7261a4a
 
 
 
910059d
 
 
 
7261a4a
 
 
 
 
 
 
73bb982
7261a4a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
---
pipeline_tag: text-classification

inference: true

widget:
- text: "Sem Mark in živim v Ljubljani. Sem doktorski študent na Mednarodni podiplomski šoli Jožefa Stefana."
language: 
  - sl
license: mit
---

# Hate Speech Classifier for Social Media Content in Slovenian Language

A monolingual model for hate speech classification of social media content in Slovenian language. The model was trained on 50,000 Twitter comments and tested on an independent test set of 10,000 Twitter comments. It is based on multilingual CroSloEngual BERT pre-trained language model.

## Please cite:
Kralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetič, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing.
https://link.springer.com/chapter/10.1007/978-3-031-08974-9_54

## Tokenizer

During training the text was preprocessed using the original CroSloEngual BERT tokenizer. We suggest the same tokenizer is used for inference.

## Model output

The model classifies each input into one of four distinct classes:
* 0 - acceptable
* 1 - inappropriate
* 2 - offensive
* 3 - violent