File size: 7,816 Bytes
51379b3
 
 
 
 
 
f39cca0
 
67911e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51379b3
 
 
 
 
c352e09
 
 
51379b3
 
c352e09
51379b3
 
 
c352e09
51379b3
0d21a62
328514c
0d21a62
328514c
0d21a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328514c
 
 
 
0d21a62
43d4a4a
 
51379b3
 
c352e09
 
 
 
 
 
 
 
 
 
 
 
51379b3
c352e09
 
51379b3
c352e09
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
library_name: sklearn
tags:
- tabular-regression
- materials property prediction
- baseline-trainer
widget:
  structuredData:
    Sc:
    - 0
    Ti:
    - 0
    V:
    - 0
    Cr:
    - 0
    Mn:
    - 0
    Fe:
    - 12.0
    Co:
    - 2.0
    Ni:
    - 0
    Cu:
    - 0
    Al:
    - 0
    Si:
    - 0
    Ga:
    - 0
    Ge:
    - 0
    Be:
    - 0
    Nb:
    - 0
    Mo:
    - 0
    Re:
    - 0
    Ru:
    - 0
    La:
    - 0
    Ce:
    - 0
    Pr:
    - 1.9
    Nd:
    - 0
    Sm:
    - 0
    Eu:
    - 0
    Gd:
    - 0
    Tb:
    - 0.1
    Dy:
    - 0
    Ho:
    - 0
    Er:
    - 0
    Tm:
    - 0
    Yb:
    - 0
    Lu:
    - 0
    Th:
    - 0
    Y:
    - 0
    Zr:
    - 0
    B:
    - 0
    C:
    - 0
---

**Model Description**

The magnet Curie temperature (Tc [K]) predictor model has been trained using a supervised learning approach on a specific set of magnet classes having 14:2:1 phases.
The dataset to train the Tc prediction model is a distinct literature source.
Further, the Tc values for various 14:2:1 magnet phases at room temperature are considered for dataset creation.

It predicts the Tc value using the chemical composition as a feature.

E.g: To predict the Tc value Nd2Fe14B1 magnet composition, the features are Nd=2, Fe=14, and B=1.

**Application & Limitations**

The trained model is valid for 14:2:1 phases only, which are stoichiometric compositions and the predicted Tc value is in Kelvin and at room temperature.

**Model Plot**

<style>#sk-31f1492d-398b-4eed-9409-15e41d2ae601 {color: black;background-color: white;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 pre{padding: 0;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-toggleable {background-color: white;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-estimator:hover {background-color: #d4ebff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-item {z-index: 1;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel-item:only-child::after {width: 0;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-container {display: inline-block;position: relative;}</style><div id="sk-31f1492d-398b-4eed-9409-15e41d2ae601" class"sk-top-container"><div class="sk-container"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ef7a2220-1243-414d-9815-7f672754c9cf" type="checkbox" ><label class="sk-toggleable__label" for="ef7a2220-1243-414d-9815-7f672754c9cf">VotingRegressor</label><div class="sk-toggleable__content"><pre>VotingRegressor(estimators=[('ET', ExtraTreesRegressor()),
                            ('XGB',
                             XGBRegressor(alpha=0.5, base_score=0.5,
                                          booster='gbtree', colsample_bylevel=1,
                                          colsample_bynode=1,
                                          colsample_bytree=0.4,
                                          enable_categorical=False, gamma=0,
                                          gpu_id=-1, importance_type=None,
                                          interaction_constraints='',
                                          learning_rate=0.2, max_delta_step=0,
                                          max_depth=2, min_child_weight=1,
                                          missing=nan,
                                          mo...
                                          n_estimators=1000, n_jobs=8,
                                          num_parallel_tree=1, predictor='auto',
                                          random_state=0, reg_alpha=0.5,
                                          reg_lambda=1, scale_pos_weight=1,
                                          subsample=1, tree_method='exact',
                                          validate_parameters=1,
                                          verbosity=None)),
                            ('RF', RandomForestRegressor(max_depth=100)),
                            ('AB',
                             AdaBoostRegressor(base_estimator=RandomForestRegressor(max_depth=50,
                                                                                    n_estimators=50),
                                               learning_rate=0.001))])
                                               

**How to use the trained model for inference**

```python
import json
from joblib
import pandas as pd

Tc_predictor = load('Magnet_Tc_predictor.joblib') # trained model
config = json.load(open('config.json')) # config file
features = config['features'] # feature extraction

#data = pd.read_excel("data.xlsx") # read test file with new compositions 
data = data[features]
#data.columns = ["feat_" + str(col) for col in data.columns]

Predicted_value = Tc_predictor.predict(data) # predict Tc values
print("Predicted Tc value is: {0:.2f}'.format(predictions)")

```