|
--- |
|
license: etalab-2.0 |
|
tags: |
|
- segmentation |
|
- pytorch |
|
- aerial imagery |
|
- landcover |
|
- IGN |
|
model-index: |
|
- name: FLAIR-INC_RVBIE_unetresnet34_15cl_norm |
|
results: |
|
- task: |
|
type: semantic-segmentation |
|
dataset: |
|
name: IGNF/FLAIR#1-TEST |
|
type: earth-observation-dataset |
|
metrics: |
|
- name: mIoU |
|
type: mIoU |
|
value: 54.72 |
|
- name: Overall Accuracy |
|
type: OA |
|
value: 76.37 |
|
- name: Fscore |
|
type: Fscore |
|
value: 67.60 |
|
- name: Precision |
|
type: Precision |
|
value: 69.35 |
|
- name: Recall |
|
type: Recall |
|
value: 67.65 |
|
|
|
- name: IoU Buildings |
|
type: IoU |
|
value: 82.3 |
|
- name: IoU Pervious surface |
|
type: IoU |
|
value: 53.24 |
|
- name: IoU Impervious surface |
|
type: IoU |
|
value: 74.17 |
|
- name: IoU Bare soil |
|
type: IoU |
|
value: 60.40 |
|
- name: IoU Water |
|
type: IoU |
|
value: 87.59 |
|
- name: IoU Coniferous |
|
type: IoU |
|
value: 46.35 |
|
- name: IoU Deciduous |
|
type: IoU |
|
value: 67.45 |
|
- name: IoU Brushwood |
|
type: IoU |
|
value: 30.23 |
|
- name: IoU Vineyard |
|
type: IoU |
|
value: 82.93 |
|
- name: IoU Herbaceous vegetation |
|
type: IoU |
|
value: 55.03 |
|
- name: IoU Agricultural land |
|
type: IoU |
|
value: 52.01 |
|
- name: IoU Plowed land |
|
type: IoU |
|
value: 40.84 |
|
- name: IoU Swimming pool |
|
type: IoU |
|
value: 48.44 |
|
- name: IoU Greenhouse |
|
type: IoU |
|
value: 39.44 |
|
|
|
pipeline_tag: image-segmentation |
|
--- |
|
|
|
|
|
Lorem ipsum dolor sit amet. Hic galisum tenetur et perspiciatis odit et aliquid perferendis ut galisum quisquam. |
|
Ad veritatis optio ut quaerat tempora sit quae tenetur et quam iste! Et mollitia natus eum facere debitis ut nisi voluptatum qui voluptas iusto hic adipisci voluptas |
|
ab reiciendis fuga id nisi quia. |
|
|
|
Aut omnis architecto ut quis culpa quo molestiae animi sit explicabo quae ea necessitatibus magni. |
|
Et voluptatem velit et quia laudantium aut voluptatem fugit aut labore consequatur et maxime eius aut perferendis placeat. |
|
Vel expedita tenetur et dolores cupiditate sed dolorum ratione id quia odio quo sint molestiae ut dicta quos. |
|
|
|
Ut iste unde in delectus quia aut reiciendis voluptatem ut voluptatem velit et dolore quia rem quia accusamus. |
|
Ab maiores tempore 33 deleniti ipsam a molestiae dolor eos optio optio aut perferendis quasi et expedita ipsum vel similique accusamus. |
|
|
|
|
|
|
|
## Model Informations |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** https://github.com/IGNF/FLAIR-1-AI-Challenge |
|
- **Paper [optional]:** https://arxiv.org/pdf/2211.12979.pdf |
|
- **Developed by:** IGN |
|
- **Compute infrastructure:** |
|
- software: python, pytorch-lightning |
|
- hardware: GENCI, XXX |
|
- **License:** : Apache 2.0 |
|
|
|
|
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
{{ bias_risks_limitations | default("[More Information Needed]", true)}} |
|
|
|
### Recommendations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
{{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", true)}} |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
{{ get_started_code | default("[More Information Needed]", true)}} |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
{{ training_data | default("[More Information Needed]", true)}} |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
#### Preprocessing [optional] |
|
|
|
{{ preprocessing | default("[More Information Needed]", true)}} |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** {{ training_regime | default("[More Information Needed]", true)}} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
{{ speeds_sizes_times | default("[More Information Needed]", true)}} |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Dataset Card if possible. --> |
|
|
|
{{ testing_data | default("[More Information Needed]", true)}} |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
{{ testing_metrics | default("[More Information Needed]", true)}} |
|
|
|
### Results |
|
|
|
{{ results | default("[More Information Needed]", true)}} |
|
|
|
#### Summary |
|
|
|
{{ results_summary | default("", true) }} |
|
|
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
{{ model_specs | default("[More Information Needed]", true)}} |
|
|
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
{{ citation_bibtex | default("[More Information Needed]", true)}} |
|
|
|
**APA:** |
|
|
|
{{ citation_apa | default("[More Information Needed]", true)}} |
|
|
|
## Contact |
|
ai-challenge@ign.fr |
|
|