AGarioud's picture
Update README.md
9c1de65 verified
|
raw
history blame
5.78 kB
---
license: etalab-2.0
tags:
- segmentation
- pytorch
- aerial imagery
- landcover
- IGN
model-index:
- name: FLAIR-INC_RVBIE_unetresnet34_15cl_norm
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR#1-TEST
type: earth-observation-dataset
metrics:
- name: mIoU
type: mIoU
value: 54.72
- name: Overall Accuracy
type: OA
value: 76.37
- name: Fscore
type: Fscore
value: 67.60
- name: Precision
type: Precision
value: 69.35
- name: Recall
type: Recall
value: 67.65
- name: IoU Buildings
type: IoU
value: 82.3
- name: IoU Pervious surface
type: IoU
value: 53.24
- name: IoU Impervious surface
type: IoU
value: 74.17
- name: IoU Bare soil
type: IoU
value: 60.40
- name: IoU Water
type: IoU
value: 87.59
- name: IoU Coniferous
type: IoU
value: 46.35
- name: IoU Deciduous
type: IoU
value: 67.45
- name: IoU Brushwood
type: IoU
value: 30.23
- name: IoU Vineyard
type: IoU
value: 82.93
- name: IoU Herbaceous vegetation
type: IoU
value: 55.03
- name: IoU Agricultural land
type: IoU
value: 52.01
- name: IoU Plowed land
type: IoU
value: 40.84
- name: IoU Swimming pool
type: IoU
value: 48.44
- name: IoU Greenhouse
type: IoU
value: 39.44
pipeline_tag: image-segmentation
---
Lorem ipsum dolor sit amet. Hic galisum tenetur et perspiciatis odit et aliquid perferendis ut galisum quisquam.
Ad veritatis optio ut quaerat tempora sit quae tenetur et quam iste! Et mollitia natus eum facere debitis ut nisi voluptatum qui voluptas iusto hic adipisci voluptas
ab reiciendis fuga id nisi quia.
Aut omnis architecto ut quis culpa quo molestiae animi sit explicabo quae ea necessitatibus magni.
Et voluptatem velit et quia laudantium aut voluptatem fugit aut labore consequatur et maxime eius aut perferendis placeat.
Vel expedita tenetur et dolores cupiditate sed dolorum ratione id quia odio quo sint molestiae ut dicta quos.
Ut iste unde in delectus quia aut reiciendis voluptatem ut voluptatem velit et dolore quia rem quia accusamus.
Ab maiores tempore 33 deleniti ipsam a molestiae dolor eos optio optio aut perferendis quasi et expedita ipsum vel similique accusamus.
## Model Informations
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/IGNF/FLAIR-1-AI-Challenge
- **Paper [optional]:** https://arxiv.org/pdf/2211.12979.pdf
- **Developed by:** IGN
- **Compute infrastructure:**
- software: python, pytorch-lightning
- hardware: GENCI, XXX
- **License:** : Apache 2.0
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
{{ bias_risks_limitations | default("[More Information Needed]", true)}}
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
{{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", true)}}
## How to Get Started with the Model
Use the code below to get started with the model.
{{ get_started_code | default("[More Information Needed]", true)}}
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
{{ training_data | default("[More Information Needed]", true)}}
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
{{ preprocessing | default("[More Information Needed]", true)}}
#### Training Hyperparameters
- **Training regime:** {{ training_regime | default("[More Information Needed]", true)}} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
{{ speeds_sizes_times | default("[More Information Needed]", true)}}
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
{{ testing_data | default("[More Information Needed]", true)}}
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
{{ testing_metrics | default("[More Information Needed]", true)}}
### Results
{{ results | default("[More Information Needed]", true)}}
#### Summary
{{ results_summary | default("", true) }}
## Technical Specifications [optional]
### Model Architecture and Objective
{{ model_specs | default("[More Information Needed]", true)}}
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
{{ citation_bibtex | default("[More Information Needed]", true)}}
**APA:**
{{ citation_apa | default("[More Information Needed]", true)}}
## Contact
ai-challenge@ign.fr