model scope
Browse files- .gitattributes +3 -0
- HF-inference.py +23 -0
- README.md +149 -0
- config.json +64 -0
- configuration.json +1 -0
- configuration_yuan.py +44 -0
- generation_config.json +7 -0
- gptq_model-4bit-128g.safetensors00 +3 -0
- gptq_model-4bit-128g.safetensors01 +3 -0
- gptq_model-4bit-128g.safetensors02 +3 -0
- quantize_config.json +13 -0
- special_tokens_map.json +35 -0
- test.py +33 -0
- test_infer.py +31 -0
- tokenizer.model +3 -0
- tokenizer_config.json +25 -0
- yuan_moe_hf_model.py +1454 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.safetensors00 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.safetensors01 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.safetensors02 filter=lfs diff=lfs merge=lfs -text
|
HF-inference.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch , transformers
|
2 |
+
import sys, os
|
3 |
+
sys.path.append(
|
4 |
+
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
|
5 |
+
from transformers import LlamaTokenizer, TextGenerationPipeline, AutoModelForCausalLM
|
6 |
+
from yuan_moe_hf_model import YuanForCausalLM
|
7 |
+
|
8 |
+
#from optimum.gptq import GPTQQuantizer, load_quantized_model
|
9 |
+
#from accelerate import init_empty_weights
|
10 |
+
device = "cuda"
|
11 |
+
|
12 |
+
quantized_model_dir = "/temp_data/LLM_test/MOE/Yuan2-M32-int4-hf"
|
13 |
+
|
14 |
+
tokenizer = LlamaTokenizer.from_pretrained('/temp_data/LLM_test/MOE/Yuan2-M32-int4-hf/', add_eos_token=False, add_bos_token=False, eos_token='<eod>')
|
15 |
+
tokenizer.add_tokens(['<sep>', '<pad>', '<mask>', '<predict>', '<FIM_SUFFIX>', '<FIM_PREFIX>', '<FIM_MIDDLE>','<commit_before>','<commit_msg>','<commit_after>','<jupyter_start>','<jupyter_text>','<jupyter_code>','<jupyter_output>','<empty_output>'], special_tokens=True)
|
16 |
+
|
17 |
+
model = YuanForCausalLM.from_pretrained(quantized_model_dir, trust_remote_code=True, use_safetensors=True).to(device)
|
18 |
+
|
19 |
+
print(tokenizer.decode(model.generate(**tokenizer("北京是中国的", return_tensors="pt").to(device), max_new_tokens=256)[0]))
|
20 |
+
|
21 |
+
#pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
|
22 |
+
#print(pipeline("北京是中国的")[0]["generated_text"])
|
23 |
+
|
README.md
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
<div align="center">
|
6 |
+
<h1>
|
7 |
+
Yuan2.0-M32: Mixture of Experts with Attention Router
|
8 |
+
</h1>
|
9 |
+
</div>
|
10 |
+
|
11 |
+
|
12 |
+
<p align="center">
|
13 |
+
🌎 <a href="https://github.com/IEIT-Yuan/Yuan2.0-M32" target="_blank">GitHub</a> • 🤗 <a href="https://huggingface.co/IEITYuan" target="_blank">Hugging Face</a> • 💬 <a href="https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/images/%E6%BA%90%E5%85%AC%E4%BC%97%E5%8F%B7%E4%BA%8C%E7%BB%B4%E7%A0%81.png" target="_blank">WeChat</a>• 📎 <a href="https://arxiv.org/abs/2405.17976" target="_blank">Yuan2.0-M32 Paper</a>
|
14 |
+
</p>
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
<div align="center">
|
19 |
+
|
20 |
+
|
21 |
+
<a href="code_license">
|
22 |
+
<img alt="Code License" src="https://img.shields.io/badge/Apache%202.0%20-green?style=flat&label=Code%20License&link=https%3A%2F%2Fgithub.com%2FIEIT-Yuan%2FYuan-2.0-MoE%3Ftab%3DApache-2.0-1-ov-file"/>
|
23 |
+
</a>
|
24 |
+
<a href="model_license">
|
25 |
+
<img alt="Model License" src="https://img.shields.io/badge/Yuan2.0%20License-blue?style=flat&logoColor=blue&label=Model%20License&color=blue&link=https%3A%2F%2Fgithub.com%2FIEIT-Yuan%2FYuan-2.0%2Fblob%2Fmain%2FLICENSE-Yuan" />
|
26 |
+
</a>
|
27 |
+
|
28 |
+
</div>
|
29 |
+
|
30 |
+
|
31 |
+
-----
|
32 |
+
|
33 |
+
|
34 |
+
## 1. Introduction
|
35 |
+
|
36 |
+
|
37 |
+
**Yuan2.0-M32** is a Mixture-of-Experts (MoE) language model with 32 experts, of which 2 are active. A new router network, Attention Router, is proposed and has been adopted for more efficient expert selection, boosting accuracy by 3.8% over models using a classical router network. Yuan 2.0-M32 is trained from scratch with 2000B tokens, and its training computation is only 9.25% of that required by a dense model of the same parameter scale. Demonstrating competitive capabilities in coding, math, and various specialized fields, Yuan2.0-M32 operates with only 3.7B active parameters out of a total 40B, and a forward computation of 7.4 GFLOPS per token, which is just 1/19th of Llama3-70B's requirement. Yuan 2.0-M32 has surpassed Llama3-70B on the MATH and ARC-Challenge benchmarks, achieving accuracies of 55.9% and 95.8%, respectively. The basic information of the **Yuan2.0-M32** model is as follows:
|
38 |
+
|
39 |
+
+ **Total Parameters :** 40B <br>
|
40 |
+
+ **Experts:** 32 <br>
|
41 |
+
+ **Active Experts:** 2 <br>
|
42 |
+
+ **Active Parameters:** 3.7B <br>
|
43 |
+
+ **Training Tokens:** 2000B tokens <br>
|
44 |
+
+ **Sequence Length:** 16K <br>
|
45 |
+
|
46 |
+
The technical report for the Yuan2.0-M32 model has been released, and you can find more detailed technical information and evaluation results by referring to the <a href="https://arxiv.org/abs/2405.17976" target="_blank">**paper**</a>.
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
## 2. Model Downloads
|
51 |
+
|
52 |
+
|
53 |
+
| Model | Sequence Length | Type | Download |
|
54 |
+
| :----------: | :------: | :-------: |:---------------------------: |
|
55 |
+
| Yuan2.0-M32 | 16K | Megatron | [HuggingFace](https://huggingface.co/IEITYuan/Yuan2-M32)
|
56 |
+
| Yuan2.0-M32-HF | 16K | HuggingFace | [HuggingFace](https://huggingface.co/IEITYuan/Yuan2-M32-hf)
|
57 |
+
| Yuan2.0-M32-GGUF | 16K | GGUF | [HuggingFace](https://huggingface.co/IEITYuan/Yuan2-M32-gguf)
|
58 |
+
| Yuan2.0-M32-GGUF-INT4 | 16K | GGUF | [HuggingFace](https://huggingface.co/IEITYuan/Yuan2-M32-gguf-int4)
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
## 3. Evaluation
|
64 |
+
|
65 |
+
|
66 |
+
**3.1 Benchmarks** 🏆
|
67 |
+
|
68 |
+
|
69 |
+
We conducted a thorough evaluation of the Yuan2.0-M32 model across a range of benchmarks, including HumanEval, GSM8K, MMLU, Math, and ARC-Challenge. These benchmarks are designed to test the model's proficiency in key areas such as natural language understanding, knowledge acquisition, mathematical computation and reasoning, and code generation. The Yuan2.0-M32 has shown a consistent and significant advantage over other models like Llama3-8B and Mistral-8×7B, excelling in all evaluated tasks. Remarkably, its overall performance is on par with the more substantial Llama3-70B model.The detailed evaluation results are outlined in the subsequent table.
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
| Model | HumanEval | GSM8K | MMLU | Math | ARC-C\* |
|
74 |
+
| ------------------ | :---------------: | :------------: | :---------------: | :---------------: | :---------------:|
|
75 |
+
| Llama3-70B | **81.7%** | **93%** | **80.3** | 50.4% | 93.3% |
|
76 |
+
| Llama3-8B | 62.2% | 79.6% | 68.4% | 30% | 78.6% |
|
77 |
+
| Phi-3-medium | 62.2% | 91.0% | 78.0% | - | 91.6% |
|
78 |
+
| Phi-3-small | 61% | 89.6% | 75.7% | - | 90.7% |
|
79 |
+
| Phi-3-mini | 58.5% | 82.5% | 68.8% | - | 84.9% |
|
80 |
+
| Mistral-8*22B | 45.1% | 78.6% | 77.8% | 41,8% | 91.3% |
|
81 |
+
| Mistral-8*7B | 40.2% | 58.4% | 70.86% | 28.4% | 85.9% |
|
82 |
+
| **Yuan2.0-M32** | 74.4% | 92.7% | 72.2% | **55.9%** | **95.8%** |
|
83 |
+
|
84 |
+
|
85 |
+
\* __*ARC-C*__: AI2 Reasoning Challenge (ARC) benchmark contains more complex parts that need further reasoning.
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
-----
|
90 |
+
|
91 |
+
**3.2 Computational Utilization for Model**
|
92 |
+
|
93 |
+
| Model | Params (B) | Active Params (B) | GFLOPs/token (Inference) | GFLOPS/token (Fine-tune) | Mean Accuracy | Average Accuracy/GFLOPSs per token (Inference) |
|
94 |
+
| ------------------ | :---------------: | :------------: | :---------------: | :---------------: | :---------------:|:---------------:|
|
95 |
+
| Llama3-70B | 70 | 70 | 140 | 420 | 79.25 | 0.57 |
|
96 |
+
| Llama3-8B | 8 | 8 | 16 | 48 | 64.15 | 4.00 |
|
97 |
+
| Mistral-8*22B | 141 | 39 | 78 | 234 | 72.38 | 0.93 |
|
98 |
+
| Mistral-8*7B | 47 | 12.9 | 25.8 | 77.3 | 60.83 | 2.36 |
|
99 |
+
| **Yuan2.0-M32** | 40 | 3.7 | 7.4 | 22.2 | 79.15 | 10.69 |
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
## 4. Quick Start
|
107 |
+
|
108 |
+
|
109 |
+
**4.1 Environment Config**
|
110 |
+
|
111 |
+
We strongly recommend using the latest release of docker images of Yuan2.0-M32.You can launch an instance of the Yuan 2.0 container with the following Docker commands:
|
112 |
+
|
113 |
+
```bash
|
114 |
+
docker pull yuanmodel/yuan2.0:m32
|
115 |
+
docker run --gpus all --privileged --ulimit stack=68719476736 --shm-size=1000G -itd -v /path/to/yuan_2.0:/workspace/yuan_2.0 -v /path/to/dataset:/workspace/dataset -v /path/to/checkpoints:/workspace/checkpoints --name your_name yuanmodel/yuan2.0:m32
|
116 |
+
docker exec -it your_name bash
|
117 |
+
```
|
118 |
+
|
119 |
+
|
120 |
+
**4.2 Data Preprocess**
|
121 |
+
|
122 |
+
We have provided the data preprocess script. See documentation [here](https://github.com/IEIT-Yuan/Yuan2.0-M32/blob/main/docs/data_process.md
|
123 |
+
).
|
124 |
+
|
125 |
+
**4.3 Model Pretrain**
|
126 |
+
|
127 |
+
We've provided several scripts for pretraining in the [`example`](https://github.com/IEIT-Yuan/Yuan2.0-M32/blob/main/examples). The details can be seen from documentation [here](https://github.com/IEIT-Yuan/Yuan2.0-M32/blob/main/docs/pretrain.md).
|
128 |
+
|
129 |
+
**4.4 Inference Service**
|
130 |
+
|
131 |
+
|
132 |
+
For a detailed deployment plan, please refer to [vllm](https://github.com/IEIT-Yuan/Yuan2.0-M32/edit/main/vllm/README_Yuan_vllm.md).
|
133 |
+
|
134 |
+
- For more information, please refer to [GitHub](https://github.com/IEIT-Yuan/Yuan2.0-M32) repository.
|
135 |
+
|
136 |
+
|
137 |
+
## 5. Statement of Agreement
|
138 |
+
|
139 |
+
|
140 |
+
The use of the source code in this repository requires compliance with the open source license agreement Apache 2.0. The Yuan2.0 model supports commercial use and does not require authorization. Please understand and comply with the [《Yuan2.0 Model License Agreement》](./LICENSE-Yuan). Do not use the open source model and code, as well as derivatives generated from open source projects, for any purposes that may cause harm to the country and society, or for any services that have not undergone security assessment and filing. Although we have taken measures to ensure the compliance and accuracy of the data during training, the model has a huge number of parameters and is affected by probability and randomness factors. We cannot guarantee the accuracy of the output content, and the model is easily misled by input instructions. This project does not assume any data security, public opinion risks, or any model misleading, abusing, spreading caused by open-source models and code Risks and responsibilities arising from improper utilization You will be solely responsible for the risks and consequences arising from the use, copying, distribution, and modification of the model in this open source project
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
## 6. Contact Us
|
145 |
+
|
146 |
+
|
147 |
+
**If you have any questions, please raise an issue or contact us at** air_service@ieisystem.com
|
148 |
+
|
149 |
+
paper:arxiv.org/abs/2405.17976
|
config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"_name_or_path": "/temp_data/LLM_test/MOE/Yuan2-M32",
|
4 |
+
"architectures": [
|
5 |
+
"YuanForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_projection_size": 4096,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_yuan.YuanConfig",
|
10 |
+
"AutoModelForCausalLM": "yuan_hf_model.YuanForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 77185,
|
13 |
+
"causal_mask": true,
|
14 |
+
"dropout": 0,
|
15 |
+
"eod_token": 77185,
|
16 |
+
"eod_token_id": 77185,
|
17 |
+
"eos_token_id": 77185,
|
18 |
+
"hidden_act": "silu",
|
19 |
+
"hidden_size": 2048,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 8192,
|
22 |
+
"mask_token_id": 77185,
|
23 |
+
"max_position_embeddings": 4096,
|
24 |
+
"model_max_length": 8192,
|
25 |
+
"model_type": "yuan",
|
26 |
+
"moe_config": {
|
27 |
+
"ffn_hidden_size": 8192,
|
28 |
+
"gated_linear_unit": true,
|
29 |
+
"moe_num_experts": 32,
|
30 |
+
"moe_top_k": 2,
|
31 |
+
"norm_topk_prob": true
|
32 |
+
},
|
33 |
+
"num_attention_heads": 16,
|
34 |
+
"num_hidden_layers": 24,
|
35 |
+
"output_router_logits": true,
|
36 |
+
"pad_token_id": 77185,
|
37 |
+
"quantization_config": {
|
38 |
+
"disable_exllama": true,
|
39 |
+
"bits": 4,
|
40 |
+
"checkpoint_format": "gptq",
|
41 |
+
"damp_percent": 0.01,
|
42 |
+
"desc_act": false,
|
43 |
+
"group_size": 128,
|
44 |
+
"model_file_base_name": "gptq_model-4bit-128g",
|
45 |
+
"model_name_or_path": "/temp_data/LLM_test/MOE/Yuan2-M32-int4-hf",
|
46 |
+
"quant_method": "gptq",
|
47 |
+
"static_groups": false,
|
48 |
+
"sym": true,
|
49 |
+
"true_sequential": true
|
50 |
+
},
|
51 |
+
"reset_attention_mask": false,
|
52 |
+
"reset_position_ids": true,
|
53 |
+
"rms_norm_eps": 1e-06,
|
54 |
+
"sep_token": 77187,
|
55 |
+
"sep_token_id": 77185,
|
56 |
+
"tokenizer_class": "YuanTokenizer",
|
57 |
+
"torch_dtype": "bfloat16",
|
58 |
+
"transformers_version": "4.39.3",
|
59 |
+
"use_cache": true,
|
60 |
+
"use_flash_attention": true,
|
61 |
+
"use_loss_mask": false,
|
62 |
+
"use_moe": true,
|
63 |
+
"vocab_size": 135040
|
64 |
+
}
|
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"framework":"Pytorch","task":"chatbot"}
|
configuration_yuan.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers.configuration_utils import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class YuanConfig(PretrainedConfig):
|
6 |
+
model_type = "yuan"
|
7 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
vocab_size=135040,
|
12 |
+
hidden_size=2048,
|
13 |
+
intermediate_size=8192,
|
14 |
+
num_hidden_layers=24,
|
15 |
+
num_attention_heads=32,
|
16 |
+
hidden_act="silu",
|
17 |
+
model_max_length=8192,
|
18 |
+
initializer_range=0.02,
|
19 |
+
rms_norm_eps=1e-6,
|
20 |
+
use_cache=True,
|
21 |
+
pad_token_id=77185,
|
22 |
+
bos_token_id=77185,
|
23 |
+
eos_token_id=77185,
|
24 |
+
tie_word_embeddings=True,
|
25 |
+
**kwargs,
|
26 |
+
):
|
27 |
+
self.vocab_size = vocab_size
|
28 |
+
self.model_max_length = model_max_length
|
29 |
+
self.hidden_size = hidden_size
|
30 |
+
self.intermediate_size = intermediate_size
|
31 |
+
self.num_hidden_layers = num_hidden_layers
|
32 |
+
self.num_attention_heads = num_attention_heads
|
33 |
+
self.hidden_act = hidden_act
|
34 |
+
self.initializer_range = initializer_range
|
35 |
+
self.rms_norm_eps = rms_norm_eps
|
36 |
+
self.use_cache = use_cache
|
37 |
+
super().__init__(
|
38 |
+
pad_token_id=pad_token_id,
|
39 |
+
bos_token_id=bos_token_id,
|
40 |
+
eos_token_id=eos_token_id,
|
41 |
+
tie_word_embeddings=tie_word_embeddings,
|
42 |
+
**kwargs,
|
43 |
+
)
|
44 |
+
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 77185,
|
4 |
+
"eos_token_id": 77185,
|
5 |
+
"pad_token_id": 77185,
|
6 |
+
"transformers_version": "4.30.2"
|
7 |
+
}
|
gptq_model-4bit-128g.safetensors00
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9522565864f78daad671cecdf7fe60c601cbb0e10397f5178dcd5d36b3f52a6a
|
3 |
+
size 8589934592
|
gptq_model-4bit-128g.safetensors01
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4c43bf9773c7f2398fdab235a76bb89827263328f06e75561354d29ae56c108
|
3 |
+
size 8589934592
|
gptq_model-4bit-128g.safetensors02
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f05d0233453d8b33db2ffadda1d49e4488c1c3816e10020e096bce67923f4182
|
3 |
+
size 4866480256
|
quantize_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bits": 4,
|
3 |
+
"group_size": 128,
|
4 |
+
"damp_percent": 0.01,
|
5 |
+
"desc_act": false,
|
6 |
+
"static_groups": false,
|
7 |
+
"sym": true,
|
8 |
+
"true_sequential": true,
|
9 |
+
"model_name_or_path": "/temp_data/LLM_test/MOE/Yuan2-M32-int4-hf",
|
10 |
+
"model_file_base_name": "gptq_model-4bit-128g",
|
11 |
+
"quant_method": "gptq",
|
12 |
+
"checkpoint_format": "gptq"
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<sep>",
|
4 |
+
"<pad>",
|
5 |
+
"<mask>",
|
6 |
+
"<predict>",
|
7 |
+
"<FIM_SUFFIX>",
|
8 |
+
"<FIM_PREFIX>",
|
9 |
+
"<FIM_MIDDLE>",
|
10 |
+
"<commit_before>",
|
11 |
+
"<commit_msg>",
|
12 |
+
"<commit_after>",
|
13 |
+
"<jupyter_start>",
|
14 |
+
"<jupyter_text>",
|
15 |
+
"<jupyter_code>",
|
16 |
+
"<jupyter_output>",
|
17 |
+
"<empty_output>",
|
18 |
+
"<repo_name>",
|
19 |
+
"<file_sep>"
|
20 |
+
],
|
21 |
+
"eos_token": {
|
22 |
+
"content": "<eod>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"unk_token": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
test.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import LlamaTokenizer, TextGenerationPipeline, AutoModelForCausalLM
|
3 |
+
from yuan_moe_hf_model import YuanForCausalLM
|
4 |
+
import sys, os
|
5 |
+
|
6 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
|
7 |
+
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
+
quantized_model_dir = "/temp_data/LLM_test/MOE/Yuan2-M32-int4-hf"
|
11 |
+
|
12 |
+
# 加载tokenizer
|
13 |
+
tokenizer = LlamaTokenizer.from_pretrained(quantized_model_dir, add_eos_token=False, add_bos_token=False, eos_token='<eod>')
|
14 |
+
|
15 |
+
# 加载模型并移动到指定设备
|
16 |
+
model = YuanForCausalLM.from_pretrained(quantized_model_dir, trust_remote_code=True, use_safetensors=True, torch_dtype=torch.float16).to(device)
|
17 |
+
|
18 |
+
#for name, param in model.named_parameters():
|
19 |
+
# if not "quantized" in name:
|
20 |
+
# param.data.normal_(mean=0.0, std=0.02) # 或者使用其他适当的初始化方式
|
21 |
+
|
22 |
+
# 将模型移动到 GPU
|
23 |
+
#model.to(device)
|
24 |
+
|
25 |
+
|
26 |
+
# 推理生成文本
|
27 |
+
input_text = "北京是中国的"
|
28 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
29 |
+
output_ids = model.generate(input_ids, max_new_tokens=256)
|
30 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
31 |
+
|
32 |
+
print(output_text)
|
33 |
+
|
test_infer.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, transformers
|
2 |
+
import sys, os
|
3 |
+
sys.path.append(
|
4 |
+
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
|
5 |
+
from transformers import AutoModelForCausalLM,AutoTokenizer,LlamaTokenizer
|
6 |
+
|
7 |
+
from yuan_moe_hf_model import YuanModel, YuanForCausalLM
|
8 |
+
|
9 |
+
|
10 |
+
print("Creat tokenizer...")
|
11 |
+
|
12 |
+
tokenizer = LlamaTokenizer.from_pretrained('/temp_data/LLM_test/MOE/moe_yuan', add_eos_token=False, add_bos_token=False, eos_token='<eod>')
|
13 |
+
tokenizer.add_tokens(['<sep>', '<pad>', '<mask>', '<predict>', '<FIM_SUFFIX>', '<FIM_PREFIX>', '<FIM_MIDDLE>','<commit_before>','<commit_msg>','<commit_after>','<jupyter_start>','<jupyter_text>','<jupyter_code>','<jupyter_output>','<empty_output>'], special_tokens=True)
|
14 |
+
|
15 |
+
#import pdb;pdb.set_trace()
|
16 |
+
print("Creat model...")
|
17 |
+
model = YuanForCausalLM.from_pretrained('/temp_data/LLM_test/MOE/moe_yuan', torch_dtype=torch.bfloat16, trust_remote_code=True).to("cuda:0")
|
18 |
+
#model = YuanForCausalLM.from_pretrained('/mnt/beegfs/sunzeyu/32experts_bin_196800_lmhead',device_map='auto',torch_dtype=torch.bfloat16,trust_remote_code=True)
|
19 |
+
|
20 |
+
#import pdb;pdb.set_trace()
|
21 |
+
|
22 |
+
generation_params = {
|
23 |
+
"max_length": 1024,
|
24 |
+
"top_k": 1,
|
25 |
+
"top_p": 0.0,
|
26 |
+
"temperature": 1.0
|
27 |
+
}
|
28 |
+
|
29 |
+
inputs = tokenizer("如果你是一个算法工程师,让你写一个大模型相关的规划,你应该怎么写?", return_tensors="pt")["input_ids"].to("cuda:0")
|
30 |
+
outputs = model.generate(inputs,do_sample=False,**generation_params)
|
31 |
+
print(tokenizer.decode(outputs[0]))
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36f79e0c70f73cdd2a8dd0fbe7bfe290da158eea746778d289e4ad76c8b383d9
|
3 |
+
size 2155861
|
tokenizer_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"clean_up_tokenization_spaces": false,
|
5 |
+
"eos_token": {
|
6 |
+
"__type": "AddedToken",
|
7 |
+
"content": "<eod>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"model_max_length": 1000000000000000019884624838656,
|
14 |
+
"pad_token": null,
|
15 |
+
"sp_model_kwargs": {},
|
16 |
+
"tokenizer_class": "LlamaTokenizer",
|
17 |
+
"unk_token": {
|
18 |
+
"__type": "AddedToken",
|
19 |
+
"content": "<unk>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": true,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
}
|
25 |
+
}
|
yuan_moe_hf_model.py
ADDED
@@ -0,0 +1,1454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Yuan model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
30 |
+
from transformers.modeling_utils import PreTrainedModel
|
31 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
32 |
+
from configuration_yuan import YuanConfig
|
33 |
+
from einops import rearrange
|
34 |
+
#from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
|
35 |
+
#from flash_attn import flash_attn_func
|
36 |
+
|
37 |
+
import copy
|
38 |
+
|
39 |
+
try:
|
40 |
+
from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
|
41 |
+
from flash_attn import flash_attn_func
|
42 |
+
except ImportError:
|
43 |
+
flash_attn_unpadded_func = None
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
_CONFIG_FOR_DOC = "YuanConfig"
|
49 |
+
|
50 |
+
|
51 |
+
class LocalizedFiltering(torch.nn.Module):
|
52 |
+
"""
|
53 |
+
Mega's Exponential Moving Average layer, largely left unmodified from the original repo with the exception of
|
54 |
+
variable names and moving away from the stateful representation of incremental decoding state. See
|
55 |
+
"https://arxiv.org/abs/2209.10655" for more details.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self, hidden_size):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
self.embed_dim = hidden_size
|
62 |
+
self.lf_conv2d_group = 1
|
63 |
+
self.lf_conv2d_num_pad = 1
|
64 |
+
|
65 |
+
self.conv1 = torch.nn.Conv2d(self.embed_dim, self.embed_dim // 2, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
|
66 |
+
self.conv2 = torch.nn.Conv2d(self.embed_dim // 2, self.embed_dim, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
|
67 |
+
self.output_layernorm = YuanRMSNorm(self.embed_dim)
|
68 |
+
|
69 |
+
def _train_forward(self, inputs):
|
70 |
+
inputs = inputs.transpose(0,1)
|
71 |
+
seq_len, bsz, embed_dim = inputs.size()
|
72 |
+
if embed_dim != self.embed_dim:
|
73 |
+
raise ValueError(
|
74 |
+
f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
|
75 |
+
)
|
76 |
+
residual = inputs
|
77 |
+
|
78 |
+
inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1)
|
79 |
+
output1 = self.conv1(inputs)
|
80 |
+
output1 = output1[:, :, :seq_len, :]
|
81 |
+
|
82 |
+
output2 = self.conv2(output1)
|
83 |
+
output2 = output2[:, :, :seq_len, :].permute(2, 3, 0, 1).contiguous()
|
84 |
+
output2 = output2.view(seq_len, bsz, embed_dim)
|
85 |
+
assert output2.shape == residual.shape
|
86 |
+
|
87 |
+
lf_output = self.output_layernorm(output2 + residual)
|
88 |
+
lf_output = lf_output.transpose(0,1)
|
89 |
+
return lf_output
|
90 |
+
|
91 |
+
def _inference_forward(self, inputs, before_hidden_states):
|
92 |
+
|
93 |
+
if before_hidden_states is None:
|
94 |
+
inputs = inputs.transpose(0,1)
|
95 |
+
seq_len, bsz, embed_dim = inputs.size()
|
96 |
+
if embed_dim != self.embed_dim:
|
97 |
+
raise ValueError(
|
98 |
+
f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
|
99 |
+
)
|
100 |
+
residual = inputs
|
101 |
+
|
102 |
+
inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1)
|
103 |
+
output1 = self.conv1(inputs)
|
104 |
+
output1 = output1[:, :, :seq_len, :]
|
105 |
+
|
106 |
+
output2 = self.conv2(output1)
|
107 |
+
output2 = output2[:, :, :seq_len, :].permute(2, 3, 0, 1).contiguous()
|
108 |
+
output2 = output2.view(seq_len, bsz, embed_dim)
|
109 |
+
assert output2.shape == residual.shape
|
110 |
+
|
111 |
+
lf_output = self.output_layernorm(output2 + residual)
|
112 |
+
lf_output = lf_output.transpose(0,1)
|
113 |
+
return lf_output
|
114 |
+
else:
|
115 |
+
inputs = inputs.transpose(0,1)
|
116 |
+
before_hidden_states = before_hidden_states.transpose(0,1)
|
117 |
+
residual = inputs
|
118 |
+
|
119 |
+
seq_len, bsz, embed_dim = inputs.size()
|
120 |
+
seq_len_before, _, _ = before_hidden_states.size()
|
121 |
+
|
122 |
+
assert seq_len == 1 and seq_len_before == 2
|
123 |
+
|
124 |
+
inputs = torch.cat((before_hidden_states, inputs), dim=0)
|
125 |
+
inputs = inputs.view(3, 1, bsz, embed_dim).permute(2, 3, 0, 1)
|
126 |
+
|
127 |
+
output1 = self.conv1(inputs)
|
128 |
+
output2 = self.conv2(output1[:,:,1:-1,:])
|
129 |
+
output2 = output2[:,:,1:-1,:]
|
130 |
+
output2 = output2.view(1, bsz, embed_dim)
|
131 |
+
assert output2.shape == residual.shape
|
132 |
+
|
133 |
+
lf_output = self.output_layernorm(output2 + residual)
|
134 |
+
lf_output = lf_output.transpose(0,1)
|
135 |
+
|
136 |
+
return lf_output
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
def forward(
|
141 |
+
self,
|
142 |
+
inputs,
|
143 |
+
before_hidden_states
|
144 |
+
) -> torch.Tensor:
|
145 |
+
assert self.lf_conv2d_num_pad == 1
|
146 |
+
if self.training:
|
147 |
+
lf_output = self._train_forward(inputs)
|
148 |
+
else:
|
149 |
+
lf_output = self._inference_forward(inputs, before_hidden_states)
|
150 |
+
|
151 |
+
return lf_output
|
152 |
+
|
153 |
+
|
154 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
155 |
+
def _make_causal_mask(
|
156 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
157 |
+
):
|
158 |
+
"""
|
159 |
+
Make causal mask used for bi-directional self-attention.
|
160 |
+
"""
|
161 |
+
bsz, tgt_len = input_ids_shape
|
162 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
163 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
164 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
165 |
+
mask = mask.to(dtype)
|
166 |
+
|
167 |
+
if past_key_values_length > 0:
|
168 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
169 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
170 |
+
|
171 |
+
|
172 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
173 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
174 |
+
"""
|
175 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
176 |
+
"""
|
177 |
+
bsz, src_len = mask.size()
|
178 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
179 |
+
|
180 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
181 |
+
|
182 |
+
inverted_mask = 1.0 - expanded_mask
|
183 |
+
|
184 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
185 |
+
|
186 |
+
|
187 |
+
def rotate_half(x):
|
188 |
+
"""Rotates half the hidden dims of the input."""
|
189 |
+
x1 = x[..., : x.shape[-1] // 2]
|
190 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
191 |
+
return torch.cat((-x2, x1), dim=-1)
|
192 |
+
|
193 |
+
def apply_rotary_pos_emb_0(q, k, cos, sin, position_ids):
|
194 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
195 |
+
rot_dim = sin.shape[-1]
|
196 |
+
|
197 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
198 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
199 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
200 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
201 |
+
|
202 |
+
q, q_pass = q[..., :rot_dim], q[..., rot_dim:]
|
203 |
+
k, k_pass = k[..., :rot_dim], k[..., rot_dim:]
|
204 |
+
|
205 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
206 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
207 |
+
|
208 |
+
return torch.cat((q_embed, q_pass), dim=-1), torch.cat((k_embed, k_pass), dim=-1)
|
209 |
+
|
210 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
211 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
212 |
+
#import pdb;pdb.set_trace()
|
213 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
214 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
215 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
216 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
217 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
218 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
219 |
+
return q_embed, k_embed
|
220 |
+
|
221 |
+
class YuanRMSNorm(nn.Module):
|
222 |
+
def __init__(self, hidden_size, eps=1e-6):
|
223 |
+
"""
|
224 |
+
YuanRMSNorm is equivalent to LlamaRMSNorm
|
225 |
+
"""
|
226 |
+
super().__init__()
|
227 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
228 |
+
self.variance_epsilon = eps
|
229 |
+
|
230 |
+
def forward(self, hidden_states):
|
231 |
+
input_dtype = hidden_states.dtype
|
232 |
+
hidden_states = hidden_states.to(torch.float32)
|
233 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
234 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
235 |
+
return self.weight * hidden_states.to(input_dtype)
|
236 |
+
|
237 |
+
class YuanRotaryEmbedding(torch.nn.Module):
|
238 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
239 |
+
|
240 |
+
"""
|
241 |
+
YuanRotaryEmbedding is equivalent to LlamaRotaryEmbedding in transformers v4.36
|
242 |
+
"""
|
243 |
+
|
244 |
+
super().__init__()
|
245 |
+
|
246 |
+
self.dim = dim
|
247 |
+
self.max_position_embeddings = max_position_embeddings
|
248 |
+
self.base = base
|
249 |
+
|
250 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
251 |
+
inv_freq = inv_freq.to(torch.bfloat16)
|
252 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
253 |
+
|
254 |
+
# Build here to make `torch.jit.trace` work.
|
255 |
+
self._set_cos_sin_cache(
|
256 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
257 |
+
)
|
258 |
+
|
259 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
260 |
+
self.max_seq_len_cached = seq_len
|
261 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
262 |
+
|
263 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
264 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
265 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
266 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
267 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
268 |
+
|
269 |
+
def forward(self, x, seq_len=None):
|
270 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
271 |
+
if seq_len > self.max_seq_len_cached:
|
272 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
273 |
+
|
274 |
+
return (
|
275 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
276 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
277 |
+
)
|
278 |
+
|
279 |
+
# flash attn
|
280 |
+
class FlashSelfAttention(torch.nn.Module):
|
281 |
+
"""Implement the scaled dot product attention with softmax.
|
282 |
+
Arguments
|
283 |
+
---------
|
284 |
+
softmax_scale: The temperature to use for the softmax attention.
|
285 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
286 |
+
runtime)
|
287 |
+
attention_dropout: The dropout rate to apply to the attention
|
288 |
+
(default: 0.0)
|
289 |
+
"""
|
290 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
|
291 |
+
device=None, dtype=None):
|
292 |
+
super().__init__()
|
293 |
+
assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
|
294 |
+
'e.g., with pip install flash-attn')
|
295 |
+
assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
|
296 |
+
self.causal = causal
|
297 |
+
self.softmax_scale = softmax_scale
|
298 |
+
self.dropout_p = attention_dropout
|
299 |
+
|
300 |
+
def forward(self, q, k, v):
|
301 |
+
"""Implements the multihead softmax attention.
|
302 |
+
Arguments
|
303 |
+
---------
|
304 |
+
q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
|
305 |
+
"""
|
306 |
+
|
307 |
+
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
|
308 |
+
assert all((i.is_cuda for i in (q,k,v)))
|
309 |
+
|
310 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
311 |
+
seqlen_k = k.shape[1]
|
312 |
+
|
313 |
+
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
|
314 |
+
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
|
315 |
+
device=q.device)
|
316 |
+
|
317 |
+
if self.training:
|
318 |
+
# during training q,k,v always have same seqlen
|
319 |
+
assert seqlen_k == seqlen_q
|
320 |
+
|
321 |
+
is_causal = self.causal
|
322 |
+
cu_seqlens_k = cu_seqlens_q
|
323 |
+
dropout_p = self.dropout_p
|
324 |
+
else:
|
325 |
+
# turn off FA causal mask after first inference autoregressive iteration
|
326 |
+
# only on first autoregressive step q,k,v have same seqlen
|
327 |
+
is_causal = seqlen_q == seqlen_k
|
328 |
+
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
|
329 |
+
device=q.device)
|
330 |
+
dropout_p = 0
|
331 |
+
|
332 |
+
output = flash_attn_unpadded_func(
|
333 |
+
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
|
334 |
+
dropout_p,
|
335 |
+
softmax_scale=self.softmax_scale, causal=is_causal
|
336 |
+
)
|
337 |
+
|
338 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
339 |
+
return output
|
340 |
+
|
341 |
+
|
342 |
+
class ParallelAttention_router(nn.Module):
|
343 |
+
def __init__(self, config):
|
344 |
+
super(ParallelAttention_router, self).__init__()
|
345 |
+
layer_number=0
|
346 |
+
self.layer_number = max(1, layer_number)
|
347 |
+
|
348 |
+
|
349 |
+
self.flash_attn_drop = 0.01
|
350 |
+
self.hidden_size = config.hidden_size
|
351 |
+
self.projection_size = config.moe_config['moe_num_experts']
|
352 |
+
|
353 |
+
self.query = nn.Linear(self.hidden_size, self.projection_size, bias=False)
|
354 |
+
self.key = nn.Linear(self.hidden_size, self.projection_size, bias=False)
|
355 |
+
self.value = nn.Linear(self.hidden_size, self.projection_size, bias=False)
|
356 |
+
|
357 |
+
|
358 |
+
def forward(self, hidden_states, attention_mask=None, enc_position_ids=None,
|
359 |
+
encoder_output=None, inference_params=None,
|
360 |
+
rotary_pos_emb=None):
|
361 |
+
is_first_step = False
|
362 |
+
before_hidden_states = None
|
363 |
+
|
364 |
+
query_layer = self.query(hidden_states)
|
365 |
+
key_layer = self.key(hidden_states)
|
366 |
+
value_layer = self.value(hidden_states)
|
367 |
+
|
368 |
+
b = query_layer.size(0)
|
369 |
+
s = query_layer.size(1) # seq*batch = token_num
|
370 |
+
z = query_layer.size(2) # expert_num
|
371 |
+
|
372 |
+
# use fp32 router
|
373 |
+
query_layer = query_layer.float().view(b,s,z,1)
|
374 |
+
key_layer = key_layer.float().view(b,s,z,1)
|
375 |
+
value_layer = value_layer.float().view(b,s,z,1)
|
376 |
+
|
377 |
+
|
378 |
+
attn_weights = torch.matmul(query_layer, key_layer.transpose(2, 3))
|
379 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
380 |
+
|
381 |
+
attn_output = torch.matmul(attn_weights, value_layer)
|
382 |
+
|
383 |
+
router_output = attn_output.view(b*s, z)
|
384 |
+
|
385 |
+
return router_output
|
386 |
+
|
387 |
+
class YuanExpertMLP(nn.Module):
|
388 |
+
def __init__(self, config):
|
389 |
+
super(YuanExpertMLP, self).__init__()
|
390 |
+
|
391 |
+
self.gated_linear_unit = config.moe_config['gated_linear_unit']
|
392 |
+
self.ffn_hidden_size = config.moe_config['ffn_hidden_size']
|
393 |
+
|
394 |
+
|
395 |
+
if self.gated_linear_unit:
|
396 |
+
self.w1 = nn.Linear(config.hidden_size, self.ffn_hidden_size*2, bias=False)
|
397 |
+
|
398 |
+
|
399 |
+
else:
|
400 |
+
self.w1 = nn.Linear(config.hidden_size, self.ffn_hidden_size, bias=False)
|
401 |
+
|
402 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
403 |
+
self.w2 = nn.Linear(self.ffn_hidden_size, config.hidden_size, bias=False)
|
404 |
+
|
405 |
+
|
406 |
+
def forward(self, x):
|
407 |
+
x = self.w1(x)
|
408 |
+
if self.gated_linear_unit:
|
409 |
+
x = torch.chunk(x, 2, dim=-1)
|
410 |
+
x = self.act_fn(x[0]) * x[1]
|
411 |
+
else:
|
412 |
+
x = self.act_fn(x)
|
413 |
+
x = self.w2(x)
|
414 |
+
return x
|
415 |
+
|
416 |
+
|
417 |
+
|
418 |
+
class YuanMLP(nn.Module):
|
419 |
+
def __init__(
|
420 |
+
self,
|
421 |
+
hidden_size: int,
|
422 |
+
intermediate_size: int,
|
423 |
+
hidden_act: str
|
424 |
+
):
|
425 |
+
super().__init__()
|
426 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
427 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
428 |
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
429 |
+
self.act_fn = ACT2FN[hidden_act]
|
430 |
+
|
431 |
+
def forward(self, x):
|
432 |
+
return self.down_proj(self.gate_proj(x) * self.act_fn(self.up_proj(x)))
|
433 |
+
|
434 |
+
|
435 |
+
class YuanAttention(nn.Module):
|
436 |
+
"""Localized Filtering-based Attention 'YUAN 2.0: A Large Language Model with Localized Filtering-based Attention' paper"""
|
437 |
+
|
438 |
+
def __init__(self, config: YuanConfig):
|
439 |
+
super().__init__()
|
440 |
+
self.config = config
|
441 |
+
self.hidden_size = config.hidden_size
|
442 |
+
self.num_heads = config.num_attention_heads
|
443 |
+
|
444 |
+
try:
|
445 |
+
self.attention_projection_size = config.attention_projection_size
|
446 |
+
except:
|
447 |
+
self.attention_projection_size = None
|
448 |
+
|
449 |
+
if self.attention_projection_size is None:
|
450 |
+
self.head_dim = self.hidden_size // self.num_heads
|
451 |
+
else:
|
452 |
+
self.head_dim = self.attention_projection_size // self.num_heads
|
453 |
+
|
454 |
+
self.max_position_embeddings = config.max_position_embeddings
|
455 |
+
self.causal_mask = config.causal_mask
|
456 |
+
self.softmax_scale = 1.0 / math.sqrt(self.head_dim)
|
457 |
+
self.use_flash_attention = config.use_flash_attention
|
458 |
+
try:
|
459 |
+
self.use_shareqk = config.use_shareqk
|
460 |
+
except Exception as e:
|
461 |
+
self.use_shareqk=False
|
462 |
+
self.dropout = 0.0
|
463 |
+
|
464 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
465 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
466 |
+
|
467 |
+
if self.head_dim == self.hidden_size // self.num_heads:
|
468 |
+
self.rotary_emb = YuanRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
469 |
+
|
470 |
+
else:
|
471 |
+
self.rotary_emb = YuanRotaryEmbedding(self.hidden_size // self.num_heads, max_position_embeddings=self.max_position_embeddings)
|
472 |
+
|
473 |
+
if self.use_shareqk:
|
474 |
+
self.qk_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
475 |
+
self.qk_weight = nn.Parameter(torch.Tensor(2, self.hidden_size))
|
476 |
+
self.qk_bias = nn.Parameter(torch.Tensor(2, self.hidden_size))
|
477 |
+
else:
|
478 |
+
self.lf_gate = LocalizedFiltering(self.hidden_size)
|
479 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
480 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
481 |
+
|
482 |
+
|
483 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
484 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
485 |
+
|
486 |
+
def forward(
|
487 |
+
self,
|
488 |
+
hidden_states: torch.Tensor,
|
489 |
+
attention_mask: Optional[torch.Tensor] = None,
|
490 |
+
position_ids: Optional[torch.LongTensor] = None,
|
491 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
492 |
+
output_attentions: bool = False,
|
493 |
+
use_cache: bool = False,
|
494 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
495 |
+
|
496 |
+
bsz, q_len, _ = hidden_states.size()
|
497 |
+
before_hidden_states = None
|
498 |
+
is_first_step = False
|
499 |
+
if use_cache:
|
500 |
+
if past_key_value is None:
|
501 |
+
inference_hidden_states_memory = torch.empty(bsz, 2, hidden_states.shape[2], dtype=hidden_states.dtype)
|
502 |
+
is_first_step = True
|
503 |
+
else:
|
504 |
+
before_hidden_states = past_key_value[2]
|
505 |
+
|
506 |
+
if use_cache:
|
507 |
+
if is_first_step:
|
508 |
+
if q_len >= 2:
|
509 |
+
inference_hidden_states_memory = hidden_states[ :, -2:, :]
|
510 |
+
else:
|
511 |
+
inference_hidden_states_memory[:, :, :] = 0
|
512 |
+
inference_hidden_states_memory[:, -1:, :] = hidden_states[:, -1:, :]
|
513 |
+
else:
|
514 |
+
hidden_states_tmp = before_hidden_states[:, -1:, :]
|
515 |
+
inference_hidden_states_memory = copy.deepcopy(torch.cat((hidden_states_tmp, hidden_states), dim=1))
|
516 |
+
|
517 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
518 |
+
if self.use_shareqk:
|
519 |
+
qk_states = self.qk_proj(hidden_states).view(bsz, q_len, self.num_heads*self.head_dim)
|
520 |
+
query_key = qk_states.unsqueeze(2) * self.qk_weight + self.qk_bias
|
521 |
+
query_states, key_states = torch.unbind(query_key, dim=2)
|
522 |
+
|
523 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
524 |
+
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
525 |
+
else:
|
526 |
+
hidden_states = self.lf_gate(hidden_states,before_hidden_states)
|
527 |
+
query_states = self.q_proj(hidden_states)
|
528 |
+
key_states = self.k_proj(hidden_states)
|
529 |
+
qk_states = torch.cat([query_states, key_states], dim=-1)
|
530 |
+
qk_states = qk_states.view(bsz,q_len,self.num_heads,int(qk_states.shape[-1]//self.num_heads))
|
531 |
+
(query_states,key_states) = torch.chunk(qk_states, 2, dim=-1)
|
532 |
+
query_states = query_states.transpose(1, 2)
|
533 |
+
key_states = key_states.transpose(1, 2)
|
534 |
+
|
535 |
+
kv_seq_len = key_states.shape[-2]
|
536 |
+
if past_key_value is not None:
|
537 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
538 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
539 |
+
|
540 |
+
query_states, key_states = apply_rotary_pos_emb_0(query_states, key_states, cos, sin, position_ids)
|
541 |
+
|
542 |
+
if past_key_value is not None:
|
543 |
+
# reuse k, v, self_attention
|
544 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
545 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
546 |
+
|
547 |
+
past_key_value = (key_states, value_states,inference_hidden_states_memory) if use_cache else None
|
548 |
+
if self.use_flash_attention:
|
549 |
+
attn_weights = None
|
550 |
+
query_states = query_states.transpose(1, 2)
|
551 |
+
key_states = key_states.transpose(1, 2)
|
552 |
+
value_states = value_states.transpose(1, 2)
|
553 |
+
|
554 |
+
batch_size, seqlen_q = query_states.shape[0], query_states.shape[1]
|
555 |
+
seqlen_k = key_states.shape[1]
|
556 |
+
|
557 |
+
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [query_states, key_states, value_states]]
|
558 |
+
|
559 |
+
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int,
|
560 |
+
device=q.device)
|
561 |
+
|
562 |
+
if self.training:
|
563 |
+
assert seqlen_k == seqlen_q
|
564 |
+
cu_seqlens_k = cu_seqlens_q
|
565 |
+
is_causal = self.causal_mask
|
566 |
+
else:
|
567 |
+
is_causal = seqlen_q == seqlen_k
|
568 |
+
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int,
|
569 |
+
device=q.device)
|
570 |
+
self.dropout=0
|
571 |
+
|
572 |
+
output = flash_attn_unpadded_func(
|
573 |
+
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, self.dropout, causal=is_causal
|
574 |
+
)
|
575 |
+
|
576 |
+
attn_output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
577 |
+
else:
|
578 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
579 |
+
|
580 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
581 |
+
raise ValueError(
|
582 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
583 |
+
f" {attn_weights.size()}"
|
584 |
+
)
|
585 |
+
if attention_mask is not None:
|
586 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
587 |
+
raise ValueError(
|
588 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
589 |
+
)
|
590 |
+
attn_weights = attn_weights + attention_mask
|
591 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
592 |
+
|
593 |
+
# upcast attention to fp32
|
594 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
595 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
596 |
+
|
597 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
598 |
+
raise ValueError(
|
599 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
600 |
+
f" {attn_output.size()}"
|
601 |
+
)
|
602 |
+
|
603 |
+
attn_output = attn_output.transpose(1, 2)
|
604 |
+
|
605 |
+
if self.attention_projection_size is None:
|
606 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
607 |
+
else:
|
608 |
+
attn_output = attn_output.reshape(bsz, q_len, self.attention_projection_size)
|
609 |
+
|
610 |
+
attn_output = self.o_proj(attn_output)
|
611 |
+
|
612 |
+
if not output_attentions:
|
613 |
+
attn_weights = None
|
614 |
+
return attn_output, attn_weights, past_key_value
|
615 |
+
|
616 |
+
|
617 |
+
|
618 |
+
class YuanMoeLayer(nn.Module):
|
619 |
+
def __init__(self, config):
|
620 |
+
super().__init__()
|
621 |
+
self.num_experts = config.moe_config['moe_num_experts']
|
622 |
+
self.top_k = config.moe_config['moe_top_k']
|
623 |
+
self.norm_topk_prob = config.moe_config['norm_topk_prob']
|
624 |
+
self.hidden_size = config.hidden_size
|
625 |
+
|
626 |
+
|
627 |
+
self.gate = ParallelAttention_router(config)
|
628 |
+
self.experts = nn.ModuleList(
|
629 |
+
[YuanExpertMLP(config) for _ in range(self.num_experts)]
|
630 |
+
)
|
631 |
+
|
632 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
633 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
634 |
+
|
635 |
+
# router_logits: (batch * sequence_length, n_experts)
|
636 |
+
router_logits = self.gate(hidden_states)
|
637 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
638 |
+
|
639 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
640 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
641 |
+
if self.norm_topk_prob:
|
642 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
643 |
+
# we cast back to the input dtype
|
644 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
645 |
+
|
646 |
+
final_hidden_states = torch.zeros(
|
647 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
648 |
+
)
|
649 |
+
|
650 |
+
# One hot encode the selected experts to create an expert mask
|
651 |
+
# this will be used to easily index which expert is going to be sollicitated
|
652 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
653 |
+
|
654 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
655 |
+
for expert_idx in range(self.num_experts):
|
656 |
+
expert_layer = self.experts[expert_idx]
|
657 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
658 |
+
|
659 |
+
if top_x.shape[0] == 0:
|
660 |
+
continue
|
661 |
+
|
662 |
+
# in torch it is faster to index using lists than torch tensors
|
663 |
+
top_x_list = top_x.tolist()
|
664 |
+
idx_list = idx.tolist()
|
665 |
+
|
666 |
+
# Index the correct hidden states and compute the expert hidden state for
|
667 |
+
# the current expert. We need to make sure to multiply the output hidden
|
668 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
669 |
+
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
|
670 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
|
671 |
+
|
672 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
673 |
+
# the `top_x` tensor here.
|
674 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
675 |
+
|
676 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
677 |
+
return final_hidden_states, router_logits
|
678 |
+
|
679 |
+
|
680 |
+
class YuanDecoderLayer(nn.Module):
|
681 |
+
def __init__(self, config: YuanConfig):
|
682 |
+
super().__init__()
|
683 |
+
self.hidden_size = config.hidden_size
|
684 |
+
self.self_attn = YuanAttention(config=config)
|
685 |
+
|
686 |
+
if config.moe_config['moe_num_experts'] > 0:
|
687 |
+
self.mlp = YuanMoeLayer(config)
|
688 |
+
else:
|
689 |
+
self.mlp = YuanMLP(
|
690 |
+
hidden_size=self.hidden_size,
|
691 |
+
intermediate_size=config.intermediate_size,
|
692 |
+
hidden_act=config.hidden_act,
|
693 |
+
)
|
694 |
+
|
695 |
+
|
696 |
+
self.input_layernorm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
697 |
+
self.post_attention_layernorm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
698 |
+
|
699 |
+
def forward(
|
700 |
+
self,
|
701 |
+
hidden_states: torch.Tensor,
|
702 |
+
attention_mask: Optional[torch.Tensor] = None,
|
703 |
+
position_ids: Optional[torch.LongTensor] = None,
|
704 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
705 |
+
output_attentions: Optional[bool] = False,
|
706 |
+
use_cache: Optional[bool] = False,
|
707 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
708 |
+
"""
|
709 |
+
Args:
|
710 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
711 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
712 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
713 |
+
output_attentions (`bool`, *optional*):
|
714 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
715 |
+
returned tensors for more detail.
|
716 |
+
use_cache (`bool`, *optional*):
|
717 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
718 |
+
(see `past_key_values`).
|
719 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
720 |
+
"""
|
721 |
+
residual = hidden_states
|
722 |
+
hidden_states = self.input_layernorm(hidden_states)
|
723 |
+
|
724 |
+
# Self Attention
|
725 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
726 |
+
hidden_states=hidden_states,
|
727 |
+
attention_mask=attention_mask,
|
728 |
+
position_ids=position_ids,
|
729 |
+
past_key_value=past_key_value,
|
730 |
+
output_attentions=output_attentions,
|
731 |
+
use_cache=use_cache,
|
732 |
+
)
|
733 |
+
|
734 |
+
hidden_states = residual + hidden_states
|
735 |
+
|
736 |
+
# Fully Connected
|
737 |
+
residual = hidden_states
|
738 |
+
|
739 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
740 |
+
|
741 |
+
hidden_states, router_logits = self.mlp(hidden_states)
|
742 |
+
|
743 |
+
hidden_states = residual + hidden_states
|
744 |
+
|
745 |
+
outputs = (hidden_states,)
|
746 |
+
|
747 |
+
if output_attentions:
|
748 |
+
outputs += (self_attn_weights,)
|
749 |
+
|
750 |
+
if use_cache:
|
751 |
+
outputs += (present_key_value,)
|
752 |
+
|
753 |
+
return outputs
|
754 |
+
|
755 |
+
|
756 |
+
YUAN_START_DOCSTRING = r"""
|
757 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
758 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
759 |
+
etc.)
|
760 |
+
|
761 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
762 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
763 |
+
and behavior.
|
764 |
+
|
765 |
+
Parameters:
|
766 |
+
config ([`YuanConfig`]):
|
767 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
768 |
+
load the weights associated with the model, only the configuration. Check out the
|
769 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
770 |
+
"""
|
771 |
+
|
772 |
+
|
773 |
+
@add_start_docstrings(
|
774 |
+
"The bare Yuan Model outputting raw hidden-states without any specific head on top.",
|
775 |
+
YUAN_START_DOCSTRING,
|
776 |
+
)
|
777 |
+
class YuanPreTrainedModel(PreTrainedModel):
|
778 |
+
config_class = YuanConfig
|
779 |
+
base_model_prefix = "model"
|
780 |
+
supports_gradient_checkpointing = True
|
781 |
+
_no_split_modules = ["YuanDecoderLayer"]
|
782 |
+
_skip_keys_device_placement = "past_key_values"
|
783 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
784 |
+
|
785 |
+
def _init_weights(self, module):
|
786 |
+
std = self.config.initializer_range
|
787 |
+
if isinstance(module, nn.Linear):
|
788 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
789 |
+
if module.bias is not None:
|
790 |
+
module.bias.data.zero_()
|
791 |
+
elif isinstance(module, nn.Embedding):
|
792 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
793 |
+
if module.padding_idx is not None:
|
794 |
+
module.weight.data[module.padding_idx].zero_()
|
795 |
+
|
796 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
797 |
+
if isinstance(module, YuanModel):
|
798 |
+
module.gradient_checkpointing = value
|
799 |
+
|
800 |
+
|
801 |
+
YUAN_INPUTS_DOCSTRING = r"""
|
802 |
+
Args:
|
803 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
804 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
805 |
+
it.
|
806 |
+
|
807 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
808 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
809 |
+
|
810 |
+
[What are input IDs?](../glossary#input-ids)
|
811 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
812 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
813 |
+
|
814 |
+
- 1 for tokens that are **not masked**,
|
815 |
+
- 0 for tokens that are **masked**.
|
816 |
+
|
817 |
+
[What are attention masks?](../glossary#attention-mask)
|
818 |
+
|
819 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
820 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
821 |
+
|
822 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
823 |
+
`past_key_values`).
|
824 |
+
|
825 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
826 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
827 |
+
information on the default strategy.
|
828 |
+
|
829 |
+
- 1 indicates the head is **not masked**,
|
830 |
+
- 0 indicates the head is **masked**.
|
831 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
832 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
833 |
+
config.n_positions - 1]`.
|
834 |
+
|
835 |
+
[What are position IDs?](../glossary#position-ids)
|
836 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
837 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
838 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
839 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
840 |
+
|
841 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
842 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
843 |
+
|
844 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
845 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
846 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
847 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
848 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
849 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
850 |
+
model's internal embedding lookup matrix.
|
851 |
+
use_cache (`bool`, *optional*):
|
852 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
853 |
+
`past_key_values`).
|
854 |
+
output_attentions (`bool`, *optional*):
|
855 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
856 |
+
tensors for more detail.
|
857 |
+
output_hidden_states (`bool`, *optional*):
|
858 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
859 |
+
more detail.
|
860 |
+
return_dict (`bool`, *optional*):
|
861 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
862 |
+
"""
|
863 |
+
|
864 |
+
|
865 |
+
@add_start_docstrings(
|
866 |
+
"The bare Yuan Model outputting raw hidden-states without any specific head on top.",
|
867 |
+
YUAN_START_DOCSTRING,
|
868 |
+
)
|
869 |
+
class YuanModel(YuanPreTrainedModel):
|
870 |
+
"""
|
871 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YuanDecoderLayer`]
|
872 |
+
|
873 |
+
Args:
|
874 |
+
config: YuanConfig
|
875 |
+
"""
|
876 |
+
|
877 |
+
def __init__(self, config: YuanConfig):
|
878 |
+
super().__init__(config)
|
879 |
+
self.padding_idx = config.pad_token_id
|
880 |
+
self.vocab_size = config.vocab_size
|
881 |
+
|
882 |
+
#TODO: control it by config
|
883 |
+
self.eod_token = config.eod_token
|
884 |
+
self.reset_attention_mask = config.reset_attention_mask
|
885 |
+
self.reset_position_ids = config.reset_position_ids
|
886 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
887 |
+
self.layers = nn.ModuleList([YuanDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
888 |
+
self.norm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
889 |
+
self.gradient_checkpointing = False
|
890 |
+
# Initialize weights and apply final processing
|
891 |
+
self.post_init()
|
892 |
+
|
893 |
+
def get_input_embeddings(self):
|
894 |
+
return self.embed_tokens
|
895 |
+
|
896 |
+
def set_input_embeddings(self, value):
|
897 |
+
self.embed_tokens = value
|
898 |
+
|
899 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
900 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
901 |
+
# create causal mask
|
902 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
903 |
+
combined_attention_mask = None
|
904 |
+
if input_shape[-1] > 1:
|
905 |
+
combined_attention_mask = _make_causal_mask(
|
906 |
+
input_shape,
|
907 |
+
inputs_embeds.dtype,
|
908 |
+
device=inputs_embeds.device,
|
909 |
+
past_key_values_length=past_key_values_length,
|
910 |
+
)
|
911 |
+
|
912 |
+
if attention_mask is not None:
|
913 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
914 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
915 |
+
inputs_embeds.device
|
916 |
+
)
|
917 |
+
combined_attention_mask = (
|
918 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
919 |
+
)
|
920 |
+
|
921 |
+
return combined_attention_mask
|
922 |
+
|
923 |
+
def _prepare_decoder_attention_mask_training(self, input_id, inputs_embeds, eod_token, reset_mask_flag ,reset_attention_mask=True, reset_position_ids=True):
|
924 |
+
|
925 |
+
micro_batch_size, seq_length = input_id.size()
|
926 |
+
|
927 |
+
attention_mask = torch.tril(torch.ones(
|
928 |
+
(micro_batch_size, seq_length, seq_length), device=inputs_embeds.device)).view(
|
929 |
+
micro_batch_size, 1, seq_length, seq_length)
|
930 |
+
|
931 |
+
position_ids = torch.arange(seq_length, dtype=torch.long,
|
932 |
+
device=inputs_embeds.device)
|
933 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_id)
|
934 |
+
|
935 |
+
if reset_position_ids:
|
936 |
+
position_ids = position_ids.clone()
|
937 |
+
|
938 |
+
if reset_position_ids or reset_attention_mask:
|
939 |
+
# Loop through the batches:
|
940 |
+
for b in range(micro_batch_size):
|
941 |
+
|
942 |
+
# Find indecies where EOD token is.
|
943 |
+
eod_index = position_ids[b, input_id[b] == eod_token]
|
944 |
+
|
945 |
+
# Detach indecies from positions if going to modify positions.
|
946 |
+
if reset_position_ids:
|
947 |
+
eod_index = eod_index.clone()
|
948 |
+
# Loop through EOD indecies:
|
949 |
+
prev_index = 0
|
950 |
+
for j in range(eod_index.size()[0]):
|
951 |
+
i = eod_index[j]
|
952 |
+
# Mask attention loss.
|
953 |
+
if reset_attention_mask:
|
954 |
+
attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
|
955 |
+
# Reset positions.
|
956 |
+
if reset_position_ids:
|
957 |
+
position_ids[b, (i + 1):] -= (i + 1 - prev_index)
|
958 |
+
prev_index = i + 1
|
959 |
+
|
960 |
+
inverted_mask = 1 - attention_mask
|
961 |
+
output_attn_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min)
|
962 |
+
if reset_mask_flag:
|
963 |
+
output_attn_mask = output_attn_mask[:,:,-1:,:]
|
964 |
+
return output_attn_mask, position_ids
|
965 |
+
|
966 |
+
@add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
|
967 |
+
def forward(
|
968 |
+
self,
|
969 |
+
input_ids: torch.LongTensor = None,
|
970 |
+
attention_mask: Optional[torch.Tensor] = None,
|
971 |
+
position_ids: Optional[torch.LongTensor] = None,
|
972 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
973 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
974 |
+
use_cache: Optional[bool] = None,
|
975 |
+
output_attentions: Optional[bool] = None,
|
976 |
+
output_hidden_states: Optional[bool] = None,
|
977 |
+
output_router_logits: Optional[bool] = None,
|
978 |
+
return_dict: Optional[bool] = None,
|
979 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
980 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
981 |
+
output_router_logits = (
|
982 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
983 |
+
)
|
984 |
+
output_hidden_states = (
|
985 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
986 |
+
)
|
987 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
988 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
989 |
+
input_ids1 = copy.deepcopy(input_ids)
|
990 |
+
reset_mask_flag = False
|
991 |
+
if past_key_values:
|
992 |
+
input_ids = input_ids[:, -1:]
|
993 |
+
if use_cache:
|
994 |
+
reset_mask_flag = True
|
995 |
+
# retrieve input_ids and inputs_embeds
|
996 |
+
if input_ids is not None and inputs_embeds is not None:
|
997 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
998 |
+
elif input_ids is not None:
|
999 |
+
|
1000 |
+
batch_size, seq_length = input_ids.shape
|
1001 |
+
elif inputs_embeds is not None:
|
1002 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1003 |
+
else:
|
1004 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1005 |
+
|
1006 |
+
seq_length_with_past = seq_length
|
1007 |
+
past_key_values_length = 0
|
1008 |
+
|
1009 |
+
if past_key_values is not None:
|
1010 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
1011 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
1012 |
+
|
1013 |
+
if position_ids is None:
|
1014 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1015 |
+
position_ids = torch.arange(
|
1016 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1017 |
+
)
|
1018 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1019 |
+
else:
|
1020 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1021 |
+
|
1022 |
+
if inputs_embeds is None:
|
1023 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1024 |
+
if self.training or self.reset_position_ids:
|
1025 |
+
attention_mask, _ = self._prepare_decoder_attention_mask_training(input_ids1, inputs_embeds, self.eod_token, reset_mask_flag, self.reset_attention_mask, self.reset_position_ids)
|
1026 |
+
|
1027 |
+
else:
|
1028 |
+
if attention_mask is None:
|
1029 |
+
attention_mask = torch.ones(
|
1030 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
1031 |
+
)
|
1032 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
1033 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
hidden_states = inputs_embeds
|
1037 |
+
|
1038 |
+
if self.gradient_checkpointing and self.training:
|
1039 |
+
if use_cache:
|
1040 |
+
logger.warning_once(
|
1041 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1042 |
+
)
|
1043 |
+
use_cache = False
|
1044 |
+
|
1045 |
+
# decoder layers
|
1046 |
+
all_hidden_states = () if output_hidden_states else None
|
1047 |
+
all_self_attns = () if output_attentions else None
|
1048 |
+
next_decoder_cache = () if use_cache else None
|
1049 |
+
|
1050 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1051 |
+
if output_hidden_states:
|
1052 |
+
all_hidden_states += (hidden_states,)
|
1053 |
+
|
1054 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1055 |
+
|
1056 |
+
if self.gradient_checkpointing and self.training:
|
1057 |
+
|
1058 |
+
def create_custom_forward(module):
|
1059 |
+
def custom_forward(*inputs):
|
1060 |
+
# None for past_key_value
|
1061 |
+
return module(*inputs, output_attentions, None)
|
1062 |
+
|
1063 |
+
return custom_forward
|
1064 |
+
|
1065 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1066 |
+
create_custom_forward(decoder_layer),
|
1067 |
+
hidden_states,
|
1068 |
+
attention_mask,
|
1069 |
+
position_ids,
|
1070 |
+
None,
|
1071 |
+
)
|
1072 |
+
else:
|
1073 |
+
layer_outputs = decoder_layer(
|
1074 |
+
hidden_states,
|
1075 |
+
attention_mask=attention_mask,
|
1076 |
+
position_ids=position_ids,
|
1077 |
+
past_key_value=past_key_value,
|
1078 |
+
output_attentions=output_attentions,
|
1079 |
+
use_cache=use_cache,
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
hidden_states = layer_outputs[0]
|
1083 |
+
|
1084 |
+
if use_cache:
|
1085 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
1086 |
+
|
1087 |
+
if output_attentions:
|
1088 |
+
all_self_attns += (layer_outputs[1],)
|
1089 |
+
hidden_states = self.norm(hidden_states)
|
1090 |
+
|
1091 |
+
# add hidden states from the last decoder layer
|
1092 |
+
if output_hidden_states:
|
1093 |
+
all_hidden_states += (hidden_states,)
|
1094 |
+
next_cache = next_decoder_cache if use_cache else None
|
1095 |
+
if not return_dict:
|
1096 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1097 |
+
return BaseModelOutputWithPast(
|
1098 |
+
last_hidden_state=hidden_states,
|
1099 |
+
past_key_values=next_cache,
|
1100 |
+
hidden_states=all_hidden_states,
|
1101 |
+
attentions=all_self_attns,
|
1102 |
+
)
|
1103 |
+
|
1104 |
+
|
1105 |
+
class YuanForCausalLM(YuanPreTrainedModel):
|
1106 |
+
def __init__(self, config):
|
1107 |
+
super().__init__(config)
|
1108 |
+
self.eod_token = config.eod_token
|
1109 |
+
self.sep_token = config.sep_token
|
1110 |
+
self.use_loss_mask = config.use_loss_mask
|
1111 |
+
self.model = YuanModel(config)
|
1112 |
+
|
1113 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1114 |
+
|
1115 |
+
# Initialize weights and apply final processing
|
1116 |
+
self.post_init()
|
1117 |
+
|
1118 |
+
def get_input_embeddings(self):
|
1119 |
+
return self.model.embed_tokens
|
1120 |
+
|
1121 |
+
def set_input_embeddings(self, value):
|
1122 |
+
self.model.embed_tokens = value
|
1123 |
+
|
1124 |
+
def get_output_embeddings(self):
|
1125 |
+
return self.lm_head
|
1126 |
+
|
1127 |
+
def set_output_embeddings(self, new_embeddings):
|
1128 |
+
self.lm_head = new_embeddings
|
1129 |
+
|
1130 |
+
def set_decoder(self, decoder):
|
1131 |
+
self.model = decoder
|
1132 |
+
|
1133 |
+
def get_decoder(self):
|
1134 |
+
return self.model
|
1135 |
+
|
1136 |
+
def get_loss_mask(self, input_ids, labels, eod_token, sep_token):
|
1137 |
+
micro_batch_size, seq_length = input_ids.size()
|
1138 |
+
loss_mask = torch.ones(input_ids.size(), dtype=torch.float, device=input_ids.device)
|
1139 |
+
|
1140 |
+
position_ids = torch.arange(seq_length, dtype=torch.long,
|
1141 |
+
device=input_ids.device)
|
1142 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
1143 |
+
|
1144 |
+
|
1145 |
+
"""modify loss_mask to only calculate the loss of the answer (separated with [SEP])"""
|
1146 |
+
|
1147 |
+
for b in range(micro_batch_size):
|
1148 |
+
eod_indexs = position_ids[b, input_ids[b] == eod_token]
|
1149 |
+
sep_indexs = position_ids[b, input_ids[b] == sep_token]
|
1150 |
+
|
1151 |
+
if len(eod_indexs) == 0 or len(sep_indexs) == 0:
|
1152 |
+
loss_mask[b] = 1.0
|
1153 |
+
else:
|
1154 |
+
if eod_indexs[0] > sep_indexs[0]:
|
1155 |
+
loss_mask[b, 0:sep_indexs[0]] = 0
|
1156 |
+
|
1157 |
+
if len(eod_indexs) == len(sep_indexs):
|
1158 |
+
for ii, eod_index in enumerate(eod_indexs):
|
1159 |
+
start_index = eod_index
|
1160 |
+
if ii == (len(sep_indexs) - 1):
|
1161 |
+
stop_index = seq_length
|
1162 |
+
else:
|
1163 |
+
stop_index = sep_indexs[ii + 1]
|
1164 |
+
loss_mask[b, start_index:stop_index] = 0.0
|
1165 |
+
else:
|
1166 |
+
if len(eod_indexs) > len(sep_indexs):
|
1167 |
+
loss_mask[b,:] = 1.0
|
1168 |
+
else:
|
1169 |
+
for ii, eod_index in enumerate(eod_indexs):
|
1170 |
+
start_index = eod_index
|
1171 |
+
stop_index = sep_indexs[ii + 1]
|
1172 |
+
|
1173 |
+
loss_mask[b, start_index:stop_index] = 0.0
|
1174 |
+
|
1175 |
+
elif eod_indexs[0] < sep_indexs[0]:
|
1176 |
+
|
1177 |
+
if len(eod_indexs) == len(sep_indexs):
|
1178 |
+
for ii, eod_index in enumerate(eod_indexs):
|
1179 |
+
start_index = eod_index
|
1180 |
+
stop_index = sep_indexs[ii]
|
1181 |
+
loss_mask[b, start_index:stop_index] = 0.0
|
1182 |
+
|
1183 |
+
else:
|
1184 |
+
if len(eod_indexs) < len(sep_indexs):
|
1185 |
+
loss_mask[b,:] = 1.0
|
1186 |
+
else:
|
1187 |
+
for ii, eod_index in enumerate(eod_indexs):
|
1188 |
+
start_index = eod_index
|
1189 |
+
if ii >= len(sep_indexs):
|
1190 |
+
stop_index = seq_length
|
1191 |
+
else:
|
1192 |
+
stop_index = sep_indexs[ii]
|
1193 |
+
loss_mask[b, start_index:stop_index] = 0.0
|
1194 |
+
|
1195 |
+
loss_mask[input_ids == eod_token] = 1.0
|
1196 |
+
return loss_mask
|
1197 |
+
@add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
|
1198 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1199 |
+
def forward(
|
1200 |
+
self,
|
1201 |
+
input_ids: torch.LongTensor = None,
|
1202 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1203 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1204 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1205 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1206 |
+
labels: Optional[torch.LongTensor] = None,
|
1207 |
+
use_cache: Optional[bool] = None,
|
1208 |
+
output_attentions: Optional[bool] = None,
|
1209 |
+
output_hidden_states: Optional[bool] = None,
|
1210 |
+
output_router_logits: Optional[bool] = None,
|
1211 |
+
return_dict: Optional[bool] = None,
|
1212 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1213 |
+
r"""
|
1214 |
+
Args:
|
1215 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1216 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1217 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1218 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1219 |
+
|
1220 |
+
Returns:
|
1221 |
+
|
1222 |
+
Example:
|
1223 |
+
|
1224 |
+
```python
|
1225 |
+
>>> from transformers import AutoTokenizer, YuanForCausalLM
|
1226 |
+
|
1227 |
+
>>> model = YuanForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1228 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1229 |
+
|
1230 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
1231 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1232 |
+
|
1233 |
+
>>> # Generate
|
1234 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1235 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1236 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
1237 |
+
```"""
|
1238 |
+
|
1239 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1240 |
+
|
1241 |
+
output_hidden_states = (
|
1242 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1243 |
+
)
|
1244 |
+
|
1245 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1246 |
+
|
1247 |
+
outputs = self.model(
|
1248 |
+
input_ids=input_ids,
|
1249 |
+
attention_mask=attention_mask,
|
1250 |
+
position_ids=position_ids,
|
1251 |
+
past_key_values=past_key_values,
|
1252 |
+
inputs_embeds=inputs_embeds,
|
1253 |
+
use_cache=use_cache,
|
1254 |
+
output_attentions=output_attentions,
|
1255 |
+
output_hidden_states=output_hidden_states,
|
1256 |
+
return_dict=return_dict,
|
1257 |
+
)
|
1258 |
+
|
1259 |
+
hidden_states = outputs[0]
|
1260 |
+
|
1261 |
+
logits = self.lm_head(hidden_states)
|
1262 |
+
loss = None
|
1263 |
+
if labels is not None:
|
1264 |
+
if self.use_loss_mask:
|
1265 |
+
loss_mask = self.get_loss_mask(input_ids, labels, self.eod_token, self.sep_token)
|
1266 |
+
# Shift so that tokens < n predict n
|
1267 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1268 |
+
shift_labels = labels[..., 1:].contiguous()
|
1269 |
+
# Flatten the tokens
|
1270 |
+
if self.use_loss_mask:
|
1271 |
+
loss_fct = CrossEntropyLoss(reduction='none')
|
1272 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1273 |
+
shift_labels = shift_labels.view(-1)
|
1274 |
+
# Enable model parallelism
|
1275 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1276 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1277 |
+
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
|
1278 |
+
else:
|
1279 |
+
loss_fct = CrossEntropyLoss()
|
1280 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1281 |
+
shift_labels = shift_labels.view(-1)
|
1282 |
+
# Enable model parallelism
|
1283 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1284 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1285 |
+
if not return_dict:
|
1286 |
+
output = (logits,) + outputs[1:]
|
1287 |
+
return (loss,) + output if loss is not None else output
|
1288 |
+
|
1289 |
+
return CausalLMOutputWithPast(
|
1290 |
+
loss=loss,
|
1291 |
+
logits=logits,
|
1292 |
+
past_key_values=outputs.past_key_values,
|
1293 |
+
hidden_states=hidden_states,
|
1294 |
+
attentions=outputs.attentions,
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
def prepare_inputs_for_generation(
|
1298 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1299 |
+
):
|
1300 |
+
|
1301 |
+
position_ids = kwargs.get("position_ids", None)
|
1302 |
+
if attention_mask is not None and position_ids is None:
|
1303 |
+
# create position_ids on the fly for batch generation
|
1304 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1305 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1306 |
+
if past_key_values:
|
1307 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1308 |
+
|
1309 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1310 |
+
if inputs_embeds is not None and past_key_values is None:
|
1311 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1312 |
+
else:
|
1313 |
+
model_inputs = {"input_ids": input_ids}
|
1314 |
+
|
1315 |
+
model_inputs.update(
|
1316 |
+
{
|
1317 |
+
"position_ids": position_ids,
|
1318 |
+
"past_key_values": past_key_values,
|
1319 |
+
"use_cache": kwargs.get("use_cache"),
|
1320 |
+
"attention_mask": attention_mask,
|
1321 |
+
}
|
1322 |
+
)
|
1323 |
+
return model_inputs
|
1324 |
+
|
1325 |
+
@staticmethod
|
1326 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1327 |
+
reordered_past = ()
|
1328 |
+
for layer_past in past_key_values:
|
1329 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1330 |
+
return reordered_past
|
1331 |
+
|
1332 |
+
|
1333 |
+
@add_start_docstrings(
|
1334 |
+
"""
|
1335 |
+
The Yuan Model transformer with a sequence classification head on top (linear layer).
|
1336 |
+
|
1337 |
+
[`YuanForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1338 |
+
(e.g. GPT-2) do.
|
1339 |
+
|
1340 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1341 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1342 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1343 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1344 |
+
each row of the batch).
|
1345 |
+
""",
|
1346 |
+
YUAN_START_DOCSTRING,
|
1347 |
+
)
|
1348 |
+
class YuanForSequenceClassification(YuanPreTrainedModel):
|
1349 |
+
#_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
1350 |
+
|
1351 |
+
def __init__(self, config):
|
1352 |
+
super().__init__(config)
|
1353 |
+
self.num_labels = config.num_labels
|
1354 |
+
self.model = YuanModel(config)
|
1355 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1356 |
+
|
1357 |
+
# Initialize weights and apply final processing
|
1358 |
+
self.post_init()
|
1359 |
+
|
1360 |
+
def get_input_embeddings(self):
|
1361 |
+
return self.model.embed_tokens
|
1362 |
+
|
1363 |
+
def set_input_embeddings(self, value):
|
1364 |
+
self.model.embed_tokens = value
|
1365 |
+
|
1366 |
+
@add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
|
1367 |
+
def forward(
|
1368 |
+
self,
|
1369 |
+
input_ids: torch.LongTensor = None,
|
1370 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1371 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1372 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1373 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1374 |
+
labels: Optional[torch.LongTensor] = None,
|
1375 |
+
use_cache: Optional[bool] = None,
|
1376 |
+
output_attentions: Optional[bool] = None,
|
1377 |
+
output_hidden_states: Optional[bool] = None,
|
1378 |
+
return_dict: Optional[bool] = None,
|
1379 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1380 |
+
r"""
|
1381 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1382 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1383 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1384 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1385 |
+
"""
|
1386 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1387 |
+
transformer_outputs = self.model(
|
1388 |
+
input_ids,
|
1389 |
+
attention_mask=attention_mask,
|
1390 |
+
position_ids=position_ids,
|
1391 |
+
past_key_values=past_key_values,
|
1392 |
+
inputs_embeds=inputs_embeds,
|
1393 |
+
use_cache=use_cache,
|
1394 |
+
output_attentions=output_attentions,
|
1395 |
+
output_hidden_states=output_hidden_states,
|
1396 |
+
return_dict=return_dict,
|
1397 |
+
)
|
1398 |
+
hidden_states = transformer_outputs[0]
|
1399 |
+
logits = self.score(hidden_states)
|
1400 |
+
|
1401 |
+
if input_ids is not None:
|
1402 |
+
batch_size = input_ids.shape[0]
|
1403 |
+
else:
|
1404 |
+
batch_size = inputs_embeds.shape[0]
|
1405 |
+
|
1406 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1407 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1408 |
+
if self.config.pad_token_id is None:
|
1409 |
+
sequence_lengths = -1
|
1410 |
+
else:
|
1411 |
+
if input_ids is not None:
|
1412 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
1413 |
+
else:
|
1414 |
+
sequence_lengths = -1
|
1415 |
+
|
1416 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1417 |
+
|
1418 |
+
loss = None
|
1419 |
+
if labels is not None:
|
1420 |
+
labels = labels.to(logits.device)
|
1421 |
+
if self.config.problem_type is None:
|
1422 |
+
if self.num_labels == 1:
|
1423 |
+
self.config.problem_type = "regression"
|
1424 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1425 |
+
self.config.problem_type = "single_label_classification"
|
1426 |
+
else:
|
1427 |
+
self.config.problem_type = "multi_label_classification"
|
1428 |
+
|
1429 |
+
if self.config.problem_type == "regression":
|
1430 |
+
loss_fct = MSELoss()
|
1431 |
+
if self.num_labels == 1:
|
1432 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1433 |
+
else:
|
1434 |
+
loss = loss_fct(pooled_logits, labels)
|
1435 |
+
elif self.config.problem_type == "single_label_classification":
|
1436 |
+
loss_fct = CrossEntropyLoss()
|
1437 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1438 |
+
elif self.config.problem_type == "multi_label_classification":
|
1439 |
+
loss_fct = BCEWithLogitsLoss()
|
1440 |
+
loss = loss_fct(pooled_logits, labels)
|
1441 |
+
if not return_dict:
|
1442 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1443 |
+
return ((loss,) + output) if loss is not None else output
|
1444 |
+
|
1445 |
+
return SequenceClassifierOutputWithPast(
|
1446 |
+
loss=loss,
|
1447 |
+
logits=pooled_logits,
|
1448 |
+
past_key_values=transformer_outputs.past_key_values,
|
1449 |
+
hidden_states=transformer_outputs.hidden_states,
|
1450 |
+
attentions=transformer_outputs.attentions,
|
1451 |
+
)
|
1452 |
+
|
1453 |
+
|
1454 |
+
|