Update README.md
Browse files
README.md
CHANGED
@@ -7,14 +7,6 @@ library_name: transformers
|
|
7 |
pipeline_tag: text-generation
|
8 |
---
|
9 |
|
10 |
-
# 姜子牙系列模型
|
11 |
-
|
12 |
-
- [Ziya-LLaMA-13B-v1.1](https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1.1)
|
13 |
-
- [Ziya-LLaMA-13B-v1](https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1)
|
14 |
-
- [Ziya-LLaMA-7B-Reward](https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-7B-Reward)
|
15 |
-
- [Ziya-LLaMA-13B-Pretrain-v1](https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1)
|
16 |
-
- [Ziya-BLIP2-14B-Visual-v1](https://huggingface.co/IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1)
|
17 |
-
|
18 |
## 简介 Brief Introduction
|
19 |
|
20 |
姜子牙写作大模型V2是基于LlaMa-2的130亿参数的指令微调模型,在写作任务上进行了能力增强,是专注于写作的大模型。姜子牙写作模型可以完成公文报告、讲稿书信、创意文案等多类的写作任务。
|
@@ -44,25 +36,27 @@ pip install torch==1.12.1 tokenizers==0.13.3 git+https://github.com/huggingface/
|
|
44 |
|
45 |
最后,我们利用evol-instruct的方法,生成了约30万条高质量的通用指令数据。我们混合了通用指令数据和写作指令数据,这使得ziya-writing-v2不仅拥有良好的意图理解能力,也能够生成优秀的回答。
|
46 |
|
|
|
47 |
|
|
|
48 |
|
49 |
-
|
50 |
|
51 |
-
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
58 |
|
59 |
-
|
60 |
|
61 |
-
We
|
62 |
|
63 |
### 效果评估 Performance
|
64 |
|
65 |
-
|
66 |
|
67 |
我们以胜出率作为评价模型好坏的指标,一个模型的胜出率计算公式为:
|
68 |
|
@@ -78,16 +72,10 @@ Win Rate = (Number of wins for the model + Number of draws / 2) / Total number o
|
|
78 |
|
79 |
Generally, since most language models generate responses based on sampling, hence, a win rate greater than 55% indicates that the model significantly outperforms another model, a win rate less than 45% shows that the model clearly lags behind, and a win rate between 45% and 55% signifies that the two models are essentially on par.
|
80 |
|
81 |
-
| Ziya-Writing-
|
82 |
-
| :----: | :----: |
|
83 |
-
| vs Ziya-LLaMa-13B-v1
|
84 |
-
| vs baichuan-vicuna-7b | 69.6 | 73.5 | 68 |
|
85 |
-
| vs Moss-16B | 65.1 | 69 | 62 |
|
86 |
-
| vs ChatGLM2-6B | 58.3 | 61.5 | 56 |
|
87 |
-
| vs Minimax-abab5 | 52.3 | 53 | 50.5 |
|
88 |
-
| vs GPT-3.5-turbo | 44.7 | 49.5 | 38 |
|
89 |
|
90 |
-
(注:最大胜出率和最小胜出率,是对每一个标注人员的标注结果进行单独统计,计算出最大和最小的得分;平均胜出率是对所有标注人员的标注结果进行汇总统计,计算出平均的得分。)
|
91 |
|
92 |
## <span id="jump"> 使用 Usage </span>
|
93 |
|
@@ -101,14 +89,14 @@ import torch
|
|
101 |
device = torch.device("cuda")
|
102 |
|
103 |
query="帮我写一份去西安的旅游计划"
|
104 |
-
model = LlamaForCausalLM.from_pretrained("IDEA-CCNL/Ziya-Writing-
|
105 |
-
tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Ziya-Writing-
|
106 |
inputs = '<human>:' + query.strip() + '\n<bot>:'
|
107 |
|
108 |
input_ids = tokenizer(inputs, return_tensors="pt").input_ids.to(device)
|
109 |
generate_ids = model.generate(
|
110 |
input_ids,
|
111 |
-
max_new_tokens=
|
112 |
do_sample = True,
|
113 |
top_p = 0.85,
|
114 |
temperature = 0.85,
|
@@ -121,14 +109,6 @@ print(output)
|
|
121 |
|
122 |
```
|
123 |
|
124 |
-
## 微调示例 Finetune Example
|
125 |
-
|
126 |
-
Refer to [ziya_finetune](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/ziya_llama)
|
127 |
-
|
128 |
-
## 推理量化示例 Inference & Quantization Example
|
129 |
-
|
130 |
-
Refer to [ziya_inference](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/ziya_inference)
|
131 |
-
|
132 |
## 引用 Citation
|
133 |
|
134 |
如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2210.08590):
|
|
|
7 |
pipeline_tag: text-generation
|
8 |
---
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
## 简介 Brief Introduction
|
11 |
|
12 |
姜子牙写作大模型V2是基于LlaMa-2的130亿参数的指令微调模型,在写作任务上进行了能力增强,是专注于写作的大模型。姜子牙写作模型可以完成公文报告、讲稿书信、创意文案等多类的写作任务。
|
|
|
36 |
|
37 |
最后,我们利用evol-instruct的方法,生成了约30万条高质量的通用指令数据。我们混合了通用指令数据和写作指令数据,这使得ziya-writing-v2不仅拥有良好的意图理解能力,也能够生成优秀的回答。
|
38 |
|
39 |
+
We have collected and cleaned a large amount of authentic human writing data from the internet. Using GPT-3.5, we generated corresponding writing prompts and conducted rigorous manual verification.
|
40 |
|
41 |
+
Additionally, we trained an Answer-to-Instruction model to generate high-quality enhanced writing prompt data from unsupervised writing data, further improving the quality of our data.
|
42 |
|
43 |
+
Based on this, we carefully selected more challenging writing prompts using a reward model and specific cleaning logic, filtering out simple data and ensuring prompt diversity.
|
44 |
|
45 |
+
Finally, using the evol-instruct method, we generated approximately 300,000 high-quality general instruction data. By combining this with the writing prompt data, ziya-writing-v2 not only possesses strong intent understanding capabilities but also generates excellent responses.
|
46 |
|
47 |
+
### 对齐学习 Alignment training
|
48 |
|
49 |
+
我们使用GPT4、Minimax、Baichuan2、Qwen-14B等优秀的对话模型,对同一个指令生成不同的回答,我们利用奖励模型对不同的回答进行排序,形成偏好数据。
|
50 |
|
51 |
+
我们使用了SFT-like Alignment的方法进行对齐训练,我们在内部自研的框架上实现了Alignment的训练流程,训练使用了8k的上下位窗口,一共约2万的偏好数据。
|
52 |
|
53 |
+
We use excellent LLMs such as GPT4, Minimax, Baichuan2, Qwen-14B, and generate different responses to the same instruction. We use a reward model to rank the different responses and form preference data.
|
54 |
|
55 |
+
We utilize the SFT-like Alignment method for training, implementing the alignment training process on our internally developed framework. The training uses an 8k context window, resulting in approximately 20,000 preference data points.
|
56 |
|
57 |
### 效果评估 Performance
|
58 |
|
59 |
+
写作文案的优劣��价是一个较为主观的评判,很难用一个准确率或者满意度的打分来衡量。因此,我们使用了匿名模型多人Side-by-Side评估的机制,收集了170条不同难度的写作指令数据进行评估,我们后续也会公开这个评测集。
|
60 |
|
61 |
我们以胜出率作为评价模型好坏的指标,一个模型的胜出率计算公式为:
|
62 |
|
|
|
72 |
|
73 |
Generally, since most language models generate responses based on sampling, hence, a win rate greater than 55% indicates that the model significantly outperforms another model, a win rate less than 45% shows that the model clearly lags behind, and a win rate between 45% and 55% signifies that the two models are essentially on par.
|
74 |
|
75 |
+
| Ziya-Writing-13B-v2 | 胜出率 |
|
76 |
+
| :----: | :----: |
|
77 |
+
| vs Ziya-Writing-LLaMa-13B-v1 | 72.5 |
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
79 |
|
80 |
## <span id="jump"> 使用 Usage </span>
|
81 |
|
|
|
89 |
device = torch.device("cuda")
|
90 |
|
91 |
query="帮我写一份去西安的旅游计划"
|
92 |
+
model = LlamaForCausalLM.from_pretrained("IDEA-CCNL/Ziya-Writing-13B-v2", torch_dtype=torch.float16, device_map="auto")
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Ziya-Writing-13B-v2", use_fast=False)
|
94 |
inputs = '<human>:' + query.strip() + '\n<bot>:'
|
95 |
|
96 |
input_ids = tokenizer(inputs, return_tensors="pt").input_ids.to(device)
|
97 |
generate_ids = model.generate(
|
98 |
input_ids,
|
99 |
+
max_new_tokens=4096,
|
100 |
do_sample = True,
|
101 |
top_p = 0.85,
|
102 |
temperature = 0.85,
|
|
|
109 |
|
110 |
```
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
## 引用 Citation
|
113 |
|
114 |
如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2210.08590):
|