Cmx's picture
Upload interact_mmi.py
4c4e6a6
raw
history blame
12.3 kB
import transformers
import torch
import os
import json
import random
import numpy as np
import argparse
# from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
from tqdm import tqdm
from torch.nn import DataParallel
import logging
from transformers.modeling_gpt2 import GPT2Config, GPT2LMHeadModel
from transformers import BertTokenizer
from os.path import join, exists
from itertools import zip_longest, chain
from dataset import MyDataset
from torch.utils.data import Dataset, DataLoader
from torch.nn import CrossEntropyLoss
from sklearn.model_selection import train_test_split
from train import create_model
import torch.nn.functional as F
import copy
PAD = '[PAD]'
pad_id = 0
def set_interact_args():
"""
Sets up the training arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='1', type=str, required=False, help='生成设备')
parser.add_argument('--temperature', default=1, type=float, required=False, help='生成的temperature')
parser.add_argument('--topk', default=8, type=int, required=False, help='最高k选1')
parser.add_argument('--topp', default=0, type=float, required=False, help='最高积累概率')
parser.add_argument('--model_config', default='config/model_config_dialogue_small.json', type=str, required=False,
help='模型参数')
parser.add_argument('--log_path', default='data/interacting_mmi.log', type=str, required=False,
help='interact_mmi日志存放位置')
parser.add_argument('--voca_path', default='vocabulary/vocab_small.txt', type=str, required=False, help='选择词库')
parser.add_argument('--dialogue_model_path', default='dialogue_model/', type=str, required=False,
help='dialogue_model路径')
parser.add_argument('--mmi_model_path', default='mmi_model/', type=str, required=False,
help='互信息mmi_model路径')
parser.add_argument('--save_samples_path', default="sample/", type=str, required=False, help="保存聊天记录的文件路径")
parser.add_argument('--repetition_penalty', default=1.0, type=float, required=False,
help="重复惩罚参数,若生成的对话重复性较高,可适当提高该参数")
parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的')
parser.add_argument('--max_len', type=int, default=25, help='每个utterance的最大长度,超过指定长度则进行截断')
parser.add_argument('--max_history_len', type=int, default=5, help="dialogue history的最大长度")
parser.add_argument('--no_cuda', action='store_true', help='不使用GPU进行预测')
parser.add_argument('--batch_size', type=int, default=5, help='批量生成response,然后经过MMI模型进行筛选')
parser.add_argument('--debug', action='store_true', help='指定该参数,可以查看生成的所有候选的reponse,及其loss')
return parser.parse_args()
def create_logger(args):
"""
将日志输出到日志文件和控制台
"""
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(levelname)s - %(message)s')
# 创建一个handler,用于写入日志文件
file_handler = logging.FileHandler(
filename=args.log_path)
file_handler.setFormatter(formatter)
file_handler.setLevel(logging.INFO)
logger.addHandler(file_handler)
# 创建一个handler,用于将日志输出到控制台
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
console.setFormatter(formatter)
logger.addHandler(console)
return logger
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
"""
assert logits.dim() == 2
top_k = min(top_k, logits[0].size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
# torch.topk()返回最后一维最大的top_k个元素,返回值为二维(values,indices)
# ...表示其他维度由计算机自行推断
for logit in logits:
indices_to_remove = logit < torch.topk(logit, top_k)[0][..., -1, None]
logit[indices_to_remove] = filter_value # 对于topk之外的其他元素的logits值设为负无穷
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) # 对logits进行递减排序
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
for index, logit in enumerate(logits):
indices_to_remove = sorted_indices[index][sorted_indices_to_remove[index]]
logit[indices_to_remove] = filter_value
return logits
def main():
args = set_interact_args()
logger = create_logger(args)
# 当用户使用GPU,并且GPU可用时
args.cuda = torch.cuda.is_available() and not args.no_cuda
device = 'cuda' if args.cuda else 'cpu'
logger.info('using device:{}'.format(device))
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
tokenizer = BertTokenizer(vocab_file=args.voca_path)
# 对话model
dialogue_model = GPT2LMHeadModel.from_pretrained(args.dialogue_model_path)
dialogue_model.to(device)
dialogue_model.eval()
# 互信息mmi model
mmi_model = GPT2LMHeadModel.from_pretrained(args.mmi_model_path)
mmi_model.to(device)
mmi_model.eval()
if args.save_samples_path:
if not os.path.exists(args.save_samples_path):
os.makedirs(args.save_samples_path)
samples_file = open(args.save_samples_path + '/mmi_samples.txt', 'a', encoding='utf8')
samples_file.write("聊天记录{}:\n".format(datetime.now()))
# 存储聊天记录,每个utterance以token的id的形式进行存储
history = []
print('开始和chatbot聊天,输入CTRL + Z以退出')
while True:
try:
text = input("user:")
if args.save_samples_path:
samples_file.write("user:{}\n".format(text))
history.append(tokenizer.encode(text))
input_ids = [tokenizer.cls_token_id] # 每个input以[CLS]为开头
for history_id, history_utr in enumerate(history[-args.max_history_len:]):
input_ids.extend(history_utr)
input_ids.append(tokenizer.sep_token_id)
# 用于批量生成response,维度为(batch_size,token_len)
input_ids = [copy.deepcopy(input_ids) for _ in range(args.batch_size)]
curr_input_tensors = torch.tensor(input_ids).long().to(device)
generated = [] # 二维数组,维度为(生成的response的最大长度,batch_size),generated[i,j]表示第j个response的第i个token的id
finish_set = set() # 标记是否所有response均已生成结束,若第i个response生成结束,即生成了sep_token_id,则将i放入finish_set
# 最多生成max_len个token
for _ in range(args.max_len):
outputs = dialogue_model(input_ids=curr_input_tensors)
# print ("outputs",outputs)
next_token_logits = outputs[0][:, -1, :]
# 对于已生成的结果generated中的每个token添加一个重复惩罚项,降低其生成概率
for index in range(args.batch_size):
for token_id in set([token_ids[index] for token_ids in generated]):
next_token_logits[index][token_id] /= args.repetition_penalty
next_token_logits = next_token_logits / args.temperature
# 对于[UNK]的概率设为无穷小,也就是说模型的预测结果不可能是[UNK]这个token
for next_token_logit in next_token_logits:
next_token_logit[tokenizer.convert_tokens_to_ids('[UNK]')] = -float('Inf')
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=args.topk, top_p=args.topp)
# torch.multinomial表示从候选集合中无放回地进行抽取num_samples个元素,权重越高,抽到的几率越高,返回元素的下标
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
# 判断是否有response生成了[SEP],将已生成了[SEP]的resposne进行标记
for index, token_id in enumerate(next_token[:, 0]):
if token_id == tokenizer.sep_token_id:
finish_set.add(index)
# 检验是否所有的response均已生成[SEP]
finish_flag = True # 是否所有的response均已生成[SEP]的token
for index in range(args.batch_size):
if index not in finish_set: # response批量生成未完成
finish_flag = False
break
if finish_flag:
break
generated.append([token.item() for token in next_token[:, 0]])
# 将新生成的token与原来的token进行拼接
curr_input_tensors = torch.cat((curr_input_tensors, next_token), dim=-1)
candidate_responses = [] # 生成的所有候选response
for batch_index in range(args.batch_size):
response = []
for token_index in range(len(generated)):
if generated[token_index][batch_index] != tokenizer.sep_token_id:
response.append(generated[token_index][batch_index])
else:
break
candidate_responses.append(response)
# mmi模型的输入
if args.debug:
print("candidate response:")
samples_file.write("candidate response:\n")
min_loss = float('Inf')
best_response = ""
for response in candidate_responses:
mmi_input_id = [tokenizer.cls_token_id] # 每个input以[CLS]为开头
mmi_input_id.extend(response)
mmi_input_id.append(tokenizer.sep_token_id)
for history_utr in reversed(history[-args.max_history_len:]):
mmi_input_id.extend(history_utr)
mmi_input_id.append(tokenizer.sep_token_id)
mmi_input_tensor = torch.tensor(mmi_input_id).long().to(device)
out = mmi_model(input_ids=mmi_input_tensor, labels=mmi_input_tensor)
loss = out[0].item()
if args.debug:
text = tokenizer.convert_ids_to_tokens(response)
print("{} loss:{}".format("".join(text), loss))
samples_file.write("{} loss:{}\n".format("".join(text), loss))
if loss < min_loss:
best_response = response
min_loss = loss
history.append(best_response)
text = tokenizer.convert_ids_to_tokens(best_response)
print("chatbot:" + "".join(text))
if args.save_samples_path:
samples_file.write("chatbot:{}\n".format("".join(text)))
except KeyboardInterrupt:
if args.save_samples_path:
samples_file.close()
break
if __name__ == '__main__':
main()