dongxq commited on
Commit
90583ee
·
1 Parent(s): b1a3ea5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -21,15 +21,15 @@ Good at solving text summarization tasks, after fine-tuning on multiple Chinese
21
 
22
  | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
23
  | :----: | :----: | :----: | :----: | :----: | :----: |
24
- | 通用 General | 自然语言转换 NLT | 燃灯 Randeng | PEFASUS | 238M | 文本摘要任务-中文 Summary-Chinese |
25
 
26
  ## 模型信息 Model Information
27
 
28
  参考论文:[PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf)
29
 
30
- 基于[Randeng-Pegasus-523M-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-523M-Chinese),我们在收集的7个中文领域的文本摘要数据集(约4M个样本)上微调了它,得到了summary版本。这7个数据集为:education, new2016zh, nlpcc, shence, sohu, thucnews和weibo。
31
 
32
- Based on [Randeng-Pegasus-523M-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-523M-Chinese), we fine-tuned a text summarization version (summary) on 7 Chinese text summarization datasets, with totaling around 4M samples. The datasets include: education, new2016zh, nlpcc, shence, sohu, thucnews and weibo.
33
 
34
 
35
  ## 使用 Usage
 
21
 
22
  | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
23
  | :----: | :----: | :----: | :----: | :----: | :----: |
24
+ | 通用 General | 自然语言转换 NLT | 燃灯 Randeng | PEFASUS | 523M | 文本摘要任务-中文 Summary-Chinese |
25
 
26
  ## 模型信息 Model Information
27
 
28
  参考论文:[PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf)
29
 
30
+ 基于[Randeng-Pegasus-523M-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-523M-Chinese),我们在收集的7个中文领域的文本摘要数据集(约4M个样本),使用实体过滤后数据集(约1.8M)重新微调,在不损伤下游指标的情况下提升了摘要对原文的忠实度,得到了summary-v1版本。这7个数据集为:education, new2016zh, nlpcc, shence, sohu, thucnews和weibo。
31
 
32
+ Based on [Randeng-Pegasus-523M-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-523M-Chinese), we fine-tuned a text summarization version (summary-v1) on a filted dataset(1.8M), which we use entitys to filter these 7 Chinese text summarization datasets, with totaling around 4M samples. We can improve the faithfulness of summaries without damage to the downstream task, eg Rouge-L on lcsts. The datasets include: education, new2016zh, nlpcc, shence, sohu, thucnews and weibo.
33
 
34
 
35
  ## 使用 Usage