wanng commited on
Commit
0dcd470
1 Parent(s): e9eeeea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -9
README.md CHANGED
@@ -10,16 +10,39 @@ widget:
10
 
11
 
12
  ---
13
- # Randeng-BART-139M model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM).
14
- The 139M million parameter Randeng-BART large model, using 180G Chinese data, 8 A100(40G) training for 3 days,which is a standard transformer structure.
15
 
 
 
16
 
17
- ## Task Description
18
 
19
- Randeng-BART-139M is pre-trained by Text-Infilling task from BART [paper](https://readpaper.com/pdf-annotate/note?noteId=675945911766249472&pdfId=550970997159968917)
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- ## Usage
23
  ```python
24
  from transformers import BartForConditionalGeneration, AutoTokenizer, Text2TextGenerationPipeline
25
  import torch
@@ -31,13 +54,31 @@ text2text_generator = Text2TextGenerationPipeline(model, tokenizer)
31
  print(text2text_generator(text, max_length=50, do_sample=False))
32
  ```
33
 
34
- ## Citation
35
- If you find the resource is useful, please cite the following website in your paper.
 
 
 
 
 
 
 
 
 
 
 
 
36
  ```
 
 
 
 
 
 
37
  @misc{Fengshenbang-LM,
38
  title={Fengshenbang-LM},
39
  author={IDEA-CCNL},
40
- year={2022},
41
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
42
  }
43
- ```
 
10
 
11
 
12
  ---
13
+ # Randeng-BART-139M
 
14
 
15
+ - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
16
+ - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
17
 
18
+ ## 简介 Brief Introduction
19
 
20
+ 善于处理NLT任务,中文版的BART-base。
21
 
22
+ Good at solving NLT tasks, Chinese BART-base.
23
+
24
+ ## 模型分类 Model Taxonomy
25
+
26
+ | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
27
+ | :----: | :----: | :----: | :----: | :----: | :----: |
28
+ | 通用 General | 自然语言转换 NLT | 燃灯 Randeng | BART | 139M | - |
29
+
30
+ ## 模型分类 Model Taxonomy
31
+
32
+ | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
33
+ | :----: | :----: | :----: | :----: | :----: | :----: |
34
+ | 通用 General | 自然语言转换 NLT | 燃灯 Randeng | MegatronT5 | 770M | - |
35
+
36
+ ## 模型信息 Model Information
37
+
38
+ 参考论文:[BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf)
39
+
40
+ 为了得到一个中文版的BART-base,我们用悟道语料库(180G版本)进行预训练。具体地,我们在预训练阶段中使用了[封神框架](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen)大概花费了8张A100约3天。
41
+
42
+ To get a Chinese BART-base, we use WuDao Corpora (180 GB version) for pre-training. Specifically, we use the [fengshen framework](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen) in the pre-training phase which cost about 3 days with 8 A100 GPUs.
43
+
44
+ ## 使用 Usage
45
 
 
46
  ```python
47
  from transformers import BartForConditionalGeneration, AutoTokenizer, Text2TextGenerationPipeline
48
  import torch
 
54
  print(text2text_generator(text, max_length=50, do_sample=False))
55
  ```
56
 
57
+ ## 引用 Citation
58
+
59
+ 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):
60
+
61
+ If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):
62
+
63
+ ```text
64
+ @article{fengshenbang,
65
+ author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
66
+ title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
67
+ journal = {CoRR},
68
+ volume = {abs/2209.02970},
69
+ year = {2022}
70
+ }
71
  ```
72
+
73
+ 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
74
+
75
+ You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
76
+
77
+ ```text
78
  @misc{Fengshenbang-LM,
79
  title={Fengshenbang-LM},
80
  author={IDEA-CCNL},
81
+ year={2021},
82
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
83
  }
84
+ ```