qiyang's picture
First commit
ddf4869
|
raw
history blame
4.18 kB
metadata
language:
  - zh
license: apache-2.0
tags:
  - question-generation
  - qg
  - SQuAD
  - nlg
  - bart-base
datasets:
  - chinesesquad
metrics:
  - bleu
  - rouge
  - f1
  - meteor
  - bleu_score

Randeng-BART-139M-QG-Chinese

简介 Brief Introduction

善于处理问题生成任务的中文版 BART-base 模型。

Good at solving question generation tasks Bart-base Model (Chinese version).

模型分类 Model Taxonomy

需求 Demand 任务 Task 系列 Series 模型 Model 参数 Parameter 额外 Extra
通用 General 自然语言转换 NLT 燃灯 Randeng BART 139M 问题生成任务-中文 QuestionGeneration-Chinese

模型信息 Model Information

基于IDEA-CCNL/Randeng-BART-139M,我们在 ChineseSQuAD 数据集上微调了问题生成任务版本。该数据集翻译了部分SQuAD数据集,包含约 67k 有答案的训练样本。

Based on IDEA-CCNL/Randeng-BART-139M, we fine-tuned a question generation version on ChineseSQuAD datasets. The dataset is translated from SQuAD 2.0, with around 67k samples with answer.

下游效果 Performance

Dataset Size BLEU-4 METEOR ROUGE-L
ChineseSQuAD 139M 22.17 40.38 38.17

使用 Usage

from transformers import AutoTokenizer, BartForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Randeng-BART-139M-QG-Chinese",additional_special_tokens=["<ans>"])
model = BartForConditionalGeneration.from_pretrained("IDEA-CCNL/Randeng-BART-139M-QG-Chinese")

context = "知识:1939年9月1日德国入侵波兰后,第二次世界大战开始,华沙一直被保卫到9月27日。波兰中部,包括华沙,都在德国纳粹殖民地政府总政府的统治下。所有的高等教育机构都立即关闭,华沙的犹太人口——几十万,约占城市的 <ans> ——全部涌入华沙的贫民区。回答:30%"
inputs = tokenizer.encode_plus(
            context,
            max_length=448,
            padding="max_length",
            truncation=True,
            return_tensors='pt'
        )
out = model.generate(                
        input_ids=inputs['input_ids'],
        attention_mask=inputs['attention_mask'],
        do_sample=True,
        num_beams=5,
        max_length=64,
        top_p = 0.9,
    )
print(pred = tokenizer.batch_decode(out,clean_up_tokenization_spaces=True, skip_special_tokens=True)[0])
# 问题:华沙的犹太人口占城市的百分之多少?

引用 Citation

如果您在您的工作中使用了我们的模型,可以引用我们的论文

If you are using the resource for your work, please cite the our paper:

@article{unimc,
  author    = {Ping Yang and
               Junjie Wang and
               Ruyi Gan and
               Xinyu Zhu and
               Lin Zhang and
               Ziwei Wu and
               Xinyu Gao and
               Jiaxing Zhang and
               Tetsuya Sakai},
  title     = {Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective},
  journal   = {CoRR},
  volume    = {abs/2210.08590},
  year      = {2022}
}

也可以引用我们的网站:

You can also cite our website:

@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2021},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}