metadata
library_name: transformers
license: mit
base_model: EleutherAI/gpt-neo-125M
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: MD5_gpt_neo_v1.5
results: []
MD5_gpt_neo_v1.5
This model is a fine-tuned version of EleutherAI/gpt-neo-125M on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 9.2983
- Rouge1: 0.0139
- Rouge2: 0.0012
- Rougel: 0.0111
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel |
---|---|---|---|---|---|---|
No log | 1.0 | 231 | 7.6828 | 0.0114 | 0.0 | 0.0100 |
No log | 2.0 | 462 | 11.4070 | 0.0109 | 0.0 | 0.0098 |
8.2172 | 3.0 | 693 | 10.2654 | 0.0166 | 0.0 | 0.0146 |
8.2172 | 4.0 | 924 | 9.4727 | 0.0235 | 0.0012 | 0.0169 |
29.1262 | 5.0 | 1155 | 9.2983 | 0.0139 | 0.0012 | 0.0111 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1