File size: 2,347 Bytes
9d8e60f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---

license: apache-2.0
base_model: distilroberta-base
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: RoBERTa_conll_learning_rate7e5
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: validation
      args: conll2003
    metrics:
    - name: Precision
      type: precision
      value: 0.9373342175066313
    - name: Recall
      type: recall
      value: 0.9515314708852238
    - name: F1
      type: f1
      value: 0.9443794888926006
    - name: Accuracy
      type: accuracy
      value: 0.9872203982694608
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# RoBERTa_conll_learning_rate7e5



This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the conll2003 dataset.

It achieves the following results on the evaluation set:

- Loss: 0.0592

- Precision: 0.9373

- Recall: 0.9515

- F1: 0.9444

- Accuracy: 0.9872



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 7e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3



### Training results



| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|

| 0.0822        | 1.0   | 1756 | 0.0665          | 0.9087    | 0.9349 | 0.9216 | 0.9821   |

| 0.0329        | 2.0   | 3512 | 0.0644          | 0.9340    | 0.9429 | 0.9384 | 0.9860   |

| 0.0205        | 3.0   | 5268 | 0.0592          | 0.9373    | 0.9515 | 0.9444 | 0.9872   |





### Framework versions



- Transformers 4.41.2

- Pytorch 2.3.1+cu121

- Datasets 2.20.0

- Tokenizers 0.19.1