metadata
license: apache-2.0
base_model: distilroberta-base
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: RoBERTa_conll_epoch_8
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9463544261750539
- name: Recall
type: recall
value: 0.9589363850555369
- name: F1
type: f1
value: 0.9526038619075483
- name: Accuracy
type: accuracy
value: 0.9888772974133964
RoBERTa_conll_epoch_8
This model is a fine-tuned version of distilroberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0813
- Precision: 0.9464
- Recall: 0.9589
- F1: 0.9526
- Accuracy: 0.9889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0799 | 1.0 | 1756 | 0.0700 | 0.9133 | 0.9320 | 0.9225 | 0.9827 |
0.0449 | 2.0 | 3512 | 0.0661 | 0.9325 | 0.9440 | 0.9382 | 0.9865 |
0.0283 | 3.0 | 5268 | 0.0707 | 0.9275 | 0.9456 | 0.9365 | 0.9852 |
0.0203 | 4.0 | 7024 | 0.0622 | 0.9424 | 0.9586 | 0.9504 | 0.9882 |
0.0111 | 5.0 | 8780 | 0.0758 | 0.9382 | 0.9549 | 0.9465 | 0.9878 |
0.0067 | 6.0 | 10536 | 0.0761 | 0.9395 | 0.9546 | 0.9470 | 0.9880 |
0.0031 | 7.0 | 12292 | 0.0821 | 0.9391 | 0.9546 | 0.9468 | 0.9878 |
0.0021 | 8.0 | 14048 | 0.0813 | 0.9464 | 0.9589 | 0.9526 | 0.9889 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1