dariuslimzh commited on
Commit
5b16313
1 Parent(s): 27b67b0

Training completed

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilroberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2003
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: RoBERTa_conll_epoch_8
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2003
21
+ type: conll2003
22
+ config: conll2003
23
+ split: validation
24
+ args: conll2003
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9463544261750539
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9589363850555369
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9526038619075483
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9888772974133964
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # RoBERTa_conll_epoch_8
44
+
45
+ This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the conll2003 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0813
48
+ - Precision: 0.9464
49
+ - Recall: 0.9589
50
+ - F1: 0.9526
51
+ - Accuracy: 0.9889
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 8
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0799 | 1.0 | 1756 | 0.0700 | 0.9133 | 0.9320 | 0.9225 | 0.9827 |
83
+ | 0.0449 | 2.0 | 3512 | 0.0661 | 0.9325 | 0.9440 | 0.9382 | 0.9865 |
84
+ | 0.0283 | 3.0 | 5268 | 0.0707 | 0.9275 | 0.9456 | 0.9365 | 0.9852 |
85
+ | 0.0203 | 4.0 | 7024 | 0.0622 | 0.9424 | 0.9586 | 0.9504 | 0.9882 |
86
+ | 0.0111 | 5.0 | 8780 | 0.0758 | 0.9382 | 0.9549 | 0.9465 | 0.9878 |
87
+ | 0.0067 | 6.0 | 10536 | 0.0761 | 0.9395 | 0.9546 | 0.9470 | 0.9880 |
88
+ | 0.0031 | 7.0 | 12292 | 0.0821 | 0.9391 | 0.9546 | 0.9468 | 0.9878 |
89
+ | 0.0021 | 8.0 | 14048 | 0.0813 | 0.9464 | 0.9589 | 0.9526 | 0.9889 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.40.2
95
+ - Pytorch 2.3.0+cu121
96
+ - Datasets 2.19.1
97
+ - Tokenizers 0.19.1