dariuslimzh
commited on
Commit
•
5b16313
1
Parent(s):
27b67b0
Training completed
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilroberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- conll2003
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: RoBERTa_conll_epoch_8
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: conll2003
|
21 |
+
type: conll2003
|
22 |
+
config: conll2003
|
23 |
+
split: validation
|
24 |
+
args: conll2003
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.9463544261750539
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.9589363850555369
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.9526038619075483
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9888772974133964
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# RoBERTa_conll_epoch_8
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the conll2003 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0813
|
48 |
+
- Precision: 0.9464
|
49 |
+
- Recall: 0.9589
|
50 |
+
- F1: 0.9526
|
51 |
+
- Accuracy: 0.9889
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 5e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 8
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0799 | 1.0 | 1756 | 0.0700 | 0.9133 | 0.9320 | 0.9225 | 0.9827 |
|
83 |
+
| 0.0449 | 2.0 | 3512 | 0.0661 | 0.9325 | 0.9440 | 0.9382 | 0.9865 |
|
84 |
+
| 0.0283 | 3.0 | 5268 | 0.0707 | 0.9275 | 0.9456 | 0.9365 | 0.9852 |
|
85 |
+
| 0.0203 | 4.0 | 7024 | 0.0622 | 0.9424 | 0.9586 | 0.9504 | 0.9882 |
|
86 |
+
| 0.0111 | 5.0 | 8780 | 0.0758 | 0.9382 | 0.9549 | 0.9465 | 0.9878 |
|
87 |
+
| 0.0067 | 6.0 | 10536 | 0.0761 | 0.9395 | 0.9546 | 0.9470 | 0.9880 |
|
88 |
+
| 0.0031 | 7.0 | 12292 | 0.0821 | 0.9391 | 0.9546 | 0.9468 | 0.9878 |
|
89 |
+
| 0.0021 | 8.0 | 14048 | 0.0813 | 0.9464 | 0.9589 | 0.9526 | 0.9889 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.40.2
|
95 |
+
- Pytorch 2.3.0+cu121
|
96 |
+
- Datasets 2.19.1
|
97 |
+
- Tokenizers 0.19.1
|