File size: 2,513 Bytes
62f521d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---

license: apache-2.0
base_model: distilroberta-base
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: RoBERTa_conll_epoch_5
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: validation
      args: conll2003
    metrics:
    - name: Precision
      type: precision
      value: 0.937014382542569
    - name: Recall
      type: recall
      value: 0.9538875799394143
    - name: F1
      type: f1
      value: 0.945375698440497
    - name: Accuracy
      type: accuracy
      value: 0.9872971065631616
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# RoBERTa_conll_epoch_5



This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the conll2003 dataset.

It achieves the following results on the evaluation set:

- Loss: 0.0716

- Precision: 0.9370

- Recall: 0.9539

- F1: 0.9454

- Accuracy: 0.9873



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5



### Training results



| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|

| 0.0787        | 1.0   | 1756 | 0.0734          | 0.9024    | 0.9317 | 0.9168 | 0.9819   |

| 0.0389        | 2.0   | 3512 | 0.0706          | 0.9359    | 0.9440 | 0.9399 | 0.9854   |

| 0.023         | 3.0   | 5268 | 0.0632          | 0.9340    | 0.9483 | 0.9411 | 0.9864   |

| 0.0137        | 4.0   | 7024 | 0.0762          | 0.9368    | 0.9534 | 0.9450 | 0.9875   |

| 0.0054        | 5.0   | 8780 | 0.0716          | 0.9370    | 0.9539 | 0.9454 | 0.9873   |





### Framework versions



- Transformers 4.40.2

- Pytorch 2.3.0+cu121

- Datasets 2.19.1

- Tokenizers 0.19.1