Hypersniper commited on
Commit
2d60b99
1 Parent(s): 6563283

Delete TheOverthinker_phi-1_5

Browse files

Moveing files to main directory

TheOverthinker_phi-1_5/added_tokens.json DELETED
@@ -1,40 +0,0 @@
1
- {
2
- "\t\t": 50294,
3
- "\t\t\t": 50293,
4
- "\t\t\t\t": 50292,
5
- "\t\t\t\t\t": 50291,
6
- "\t\t\t\t\t\t": 50290,
7
- "\t\t\t\t\t\t\t": 50289,
8
- "\t\t\t\t\t\t\t\t": 50288,
9
- "\t\t\t\t\t\t\t\t\t": 50287,
10
- " ": 50286,
11
- " ": 50285,
12
- " ": 50284,
13
- " ": 50283,
14
- " ": 50282,
15
- " ": 50281,
16
- " ": 50280,
17
- " ": 50279,
18
- " ": 50278,
19
- " ": 50277,
20
- " ": 50276,
21
- " ": 50275,
22
- " ": 50274,
23
- " ": 50273,
24
- " ": 50272,
25
- " ": 50271,
26
- " ": 50270,
27
- " ": 50269,
28
- " ": 50268,
29
- " ": 50267,
30
- " ": 50266,
31
- " ": 50265,
32
- " ": 50264,
33
- " ": 50263,
34
- " ": 50262,
35
- " ": 50261,
36
- " ": 50260,
37
- " ": 50259,
38
- " ": 50258,
39
- " ": 50257
40
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TheOverthinker_phi-1_5/config.json DELETED
@@ -1,35 +0,0 @@
1
- {
2
- "_name_or_path": "D:\\AI\\oobabooga_windows\\text-generation-webui\\models\\microsoft_phi-1_5",
3
- "activation_function": "gelu_new",
4
- "architecture": {
5
- "block_cls": "parallel",
6
- "mixer": {},
7
- "mlp": {
8
- "mlp_cls": "mlp"
9
- }
10
- },
11
- "architectures": [
12
- "MixFormerSequentialForCausalLM"
13
- ],
14
- "auto_map": {
15
- "AutoConfig": "configuration_mixformer_sequential.MixFormerSequentialConfig",
16
- "AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerSequentialForCausalLM"
17
- },
18
- "embd_layer": "default",
19
- "embd_pdrop": 0.0,
20
- "initializer_range": 0.02,
21
- "layer_norm_epsilon": 1e-05,
22
- "model_type": "mixformer-sequential",
23
- "n_embd": 2048,
24
- "n_head": 32,
25
- "n_inner": null,
26
- "n_layer": 24,
27
- "n_positions": 2048,
28
- "phyagi_version": "0.0.4.dev",
29
- "resid_pdrop": 0.0,
30
- "rotary_dim": 32,
31
- "tie_word_embeddings": false,
32
- "torch_dtype": "float16",
33
- "transformers_version": "4.34.1",
34
- "vocab_size": 51200
35
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TheOverthinker_phi-1_5/configuration_mixformer_sequential.py DELETED
@@ -1,59 +0,0 @@
1
- # Copyright (c) Microsoft Corporation.
2
- # Licensed under the MIT license.
3
-
4
- import math
5
- from typing import Any, Dict, List, Optional, Union
6
-
7
- from transformers import PretrainedConfig
8
-
9
-
10
- class MixFormerSequentialConfig(PretrainedConfig):
11
- """MixFormer (sequential for DeepSpeed) configuration."""
12
-
13
- model_type = "mixformer-sequential"
14
-
15
- attribute_map = {
16
- "max_position_embeddings": "n_positions",
17
- "hidden_size": "n_embd",
18
- "num_attention_heads": "n_head",
19
- "num_hidden_layers": "n_layer",
20
- "input_emb_layer": "embd_layer", # `input_emb_layer` key is for backward compatibility
21
- "blocks": "architecture", # `blocks` key is for backward compatibility
22
- }
23
-
24
- def __init__(
25
- self,
26
- vocab_size: Optional[int] = 50304,
27
- n_positions: Optional[int] = 2048,
28
- n_embd: Optional[int] = 1024,
29
- n_layer: Optional[int] = 20,
30
- n_inner: Optional[int] = None,
31
- n_head: Optional[int] = 16,
32
- rotary_dim: Optional[int] = 32,
33
- activation_function: Optional[str] = "gelu_new",
34
- embd_layer: Optional[str] = "default",
35
- architecture: Union[Dict[str, Any], List[Dict[str, Any]]] = None,
36
- embd_pdrop: Optional[float] = 0.0,
37
- resid_pdrop: Optional[float] = 0.0,
38
- layer_norm_epsilon: Optional[float] = 1e-5,
39
- initializer_range: Optional[float] = 0.02,
40
- tie_word_embeddings: Optional[bool] = False,
41
- pad_vocab_size_multiple: Optional[int] = 64,
42
- **kwargs
43
- ) -> None:
44
- self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
45
- self.n_positions = n_positions
46
- self.n_embd = n_embd
47
- self.n_layer = n_layer
48
- self.n_inner = n_inner
49
- self.n_head = n_head
50
- self.rotary_dim = min(rotary_dim, n_embd // n_head)
51
- self.activation_function = activation_function
52
- self.embd_layer = embd_layer
53
- self.architecture = architecture
54
- self.embd_pdrop = embd_pdrop
55
- self.resid_pdrop = resid_pdrop
56
- self.layer_norm_epsilon = layer_norm_epsilon
57
- self.initializer_range = initializer_range
58
-
59
- super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TheOverthinker_phi-1_5/generation_config.json DELETED
@@ -1,4 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "transformers_version": "4.34.1"
4
- }
 
 
 
 
 
TheOverthinker_phi-1_5/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
TheOverthinker_phi-1_5/modeling_mixformer_sequential.py DELETED
@@ -1,779 +0,0 @@
1
- # Copyright (c) Microsoft Corporation.
2
- # Licensed under the MIT license.
3
-
4
- # BSD 3-Clause License
5
- #
6
- # Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
7
- # All rights reserved.
8
- #
9
- # Redistribution and use in source and binary forms, with or without
10
- # modification, are permitted provided that the following conditions are met:
11
- #
12
- # * Redistributions of source code must retain the above copyright notice, this
13
- # list of conditions and the following disclaimer.
14
- #
15
- # * Redistributions in binary form must reproduce the above copyright notice,
16
- # this list of conditions and the following disclaimer in the documentation
17
- # and/or other materials provided with the distribution.
18
- #
19
- # * Neither the name of the copyright holder nor the names of its
20
- # contributors may be used to endorse or promote products derived from
21
- # this software without specific prior written permission.
22
- #
23
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24
- # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25
- # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
26
- # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
27
- # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28
- # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29
- # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30
- # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31
- # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32
- # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
-
34
- from __future__ import annotations
35
-
36
- import math
37
- import copy
38
- from typing import Any, Dict, Optional, Tuple
39
- from dataclasses import dataclass, field
40
-
41
- import torch
42
- import torch.nn as nn
43
-
44
- from einops import rearrange
45
- from transformers.activations import ACT2FN
46
- from transformers import PretrainedConfig, PreTrainedModel
47
- from transformers.modeling_outputs import CausalLMOutputWithPast
48
-
49
- from .configuration_mixformer_sequential import MixFormerSequentialConfig
50
-
51
- @dataclass
52
- class InferenceParams:
53
- """Inference parameters that are passed to the main model in order
54
- to efficienly calculate and store the context during inference.
55
- Adapted from https://github.com/Dao-AILab/flash-attention."""
56
- max_sequence_len: int
57
- max_batch_size: int
58
- sequence_len_offset: int = 0
59
- batch_size_offset: int = 0
60
- key_value_memory_dict: dict = field(default_factory=dict)
61
- fused_ft_kernel: bool = False
62
- lengths_per_sample: Optional[torch.Tensor] = None
63
-
64
-
65
- class Embedding(nn.Module):
66
- """Token embedding with dropout."""
67
-
68
- def __init__(self, config: PretrainedConfig) -> None:
69
- super().__init__()
70
-
71
- self.wte = nn.Embedding(config.vocab_size, config.n_embd)
72
- self.drop = nn.Dropout(config.embd_pdrop)
73
-
74
- def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
75
- input_shape = input_ids.size()
76
- input_ids = input_ids.view(-1, input_shape[-1])
77
-
78
- hidden_states = self.wte(input_ids)
79
- hidden_states = self.drop(hidden_states)
80
-
81
- return hidden_states
82
-
83
- class RotaryEmbedding(nn.Module):
84
- """PyTorch implementation of `flash-attn` RotaryEmbedding layer.
85
- Adapted from https://github.com/Dao-AILab/flash-attention."""
86
-
87
- def __init__(
88
- self,
89
- dim: int,
90
- base: Optional[int] = 10000,
91
- scale_base: Optional[float] = None,
92
- device: Optional[str] = None,
93
- **kwargs,
94
- ) -> None:
95
- super().__init__()
96
-
97
- if scale_base is not None:
98
- raise NotImplementedError
99
-
100
- # Generate and save the inverse frequency buffer (non-trainable)
101
- self.dim = dim
102
- self.base = base
103
- self.scale_base = scale_base
104
- self.device = device
105
-
106
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
107
- self.register_buffer("inv_freq", inv_freq)
108
-
109
- scale = (
110
- (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
111
- if scale_base is not None
112
- else None
113
- )
114
- self.register_buffer("scale", scale)
115
-
116
- self._seq_len_cached = 0
117
- self._cos_cached = None
118
- self._sin_cached = None
119
- self._cos_k_cached = None
120
- self._sin_k_cached = None
121
-
122
- def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: Optional[int] = 0) -> None:
123
- # Reset the tables if the sequence length has changed,
124
- # or if we're on a new device (possibly due to tracing for instance)
125
- seqlen = x.shape[1] + seqlen_offset
126
-
127
- # Re-generate the inverse frequency buffer if it's not fp32
128
- # (for instance if model.half() was called)
129
- if self.inv_freq.dtype != "torch.float32":
130
- self.inv_freq = 1.0 / (
131
- self.base ** (torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32) / self.dim)
132
- )
133
-
134
- if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype:
135
- self._seq_len_cached = seqlen
136
- t = torch.arange(seqlen, device=x.device, dtype=torch.float32)
137
-
138
- # Don't do einsum, it converts fp32 to fp16
139
- # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
140
- freqs = torch.outer(t, self.inv_freq.to(device=t.device, dtype=torch.float32))
141
- if self.scale is None:
142
- self._cos_cached = torch.cos(freqs).to(x.dtype)
143
- self._sin_cached = torch.sin(freqs).to(x.dtype)
144
- else:
145
- power = (
146
- torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
147
- ) / self.scale_base
148
- scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
149
-
150
- # We want the multiplication by scale to happen in fp32
151
- self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
152
- self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
153
- self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
154
- self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
155
-
156
- def apply_rotary_emb_qkv(
157
- self,
158
- qkv: torch.FloatTensor,
159
- sin: torch.FloatTensor,
160
- cos: torch.FloatTensor,
161
- sin_k: Optional[torch.FloatTensor] = None,
162
- cos_k: Optional[torch.FloatTensor] = None,
163
- ) -> torch.FloatTensor:
164
- _, seqlen, three, _, headdim = qkv.shape
165
- assert three == 3
166
-
167
- rotary_seqlen, rotary_dim = cos.shape
168
- rotary_dim *= 2
169
- assert rotary_dim <= headdim
170
- assert seqlen <= rotary_seqlen
171
-
172
- cos_k = cos if cos_k is None else cos_k
173
- sin_k = sin if sin_k is None else sin_k
174
- assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)
175
-
176
- q_rot = qkv[:, :, 0, :, :rotary_dim]
177
- q_pass = qkv[:, :, 0, :, rotary_dim:]
178
-
179
- k_rot = qkv[:, :, 1, :, :rotary_dim]
180
- k_pass = qkv[:, :, 1, :, rotary_dim:]
181
-
182
- # Splits the queries and keys in half
183
- q1, q2 = q_rot.chunk(2, dim=-1)
184
- k1, k2 = k_rot.chunk(2, dim=-1)
185
- c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
186
-
187
- # Casts to fp32 are necessary to prevent fp16 overflow issues
188
- q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
189
-
190
- # Computes the new keys and queries, recasting to original dtype
191
- q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
192
-
193
- k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
194
-
195
- return torch.cat(
196
- [
197
- torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
198
- torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
199
- qkv[:, :, 2:3, :, :],
200
- ],
201
- axis=2,
202
- )
203
-
204
- def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
205
- """Perform the forward pass.
206
-
207
- Args:
208
- qkv: Query, key and value tensors of shape (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim).
209
- seqlen_offset: Used in generation where the passed `qkv` is only the last token in the batch.
210
-
211
- Returns:
212
- New `qkv` and the cached sinusoids.
213
-
214
- """
215
-
216
- self._update_cos_sin_cache(qkv, seqlen_offset)
217
-
218
- return self.apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])
219
-
220
- def _update_kv_cache(kv, inference_params, layer_idx):
221
- """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
222
- Adapted from https://github.com/Dao-AILab/flash-attention."""
223
- # Pre-allocate memory for key-values for inference.
224
- num_heads, head_dim = kv.shape[-2:]
225
- if layer_idx not in inference_params.key_value_memory_dict:
226
- kv_cache = torch.empty(
227
- inference_params.max_batch_size, inference_params.max_sequence_len, 2,
228
- num_heads, head_dim, dtype=kv.dtype, device=kv.device
229
- )
230
- inference_params.key_value_memory_dict[layer_idx] = kv_cache
231
- else:
232
- kv_cache = inference_params.key_value_memory_dict[layer_idx]
233
-
234
- # Adjust key and value for inference
235
- batch_start = inference_params.batch_size_offset
236
- batch_end = batch_start + kv.shape[0]
237
- sequence_start = inference_params.sequence_len_offset
238
- sequence_end = sequence_start + kv.shape[1]
239
- assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
240
- assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
241
-
242
- assert kv_cache is not None
243
- kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
244
- kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
245
- return kv
246
-
247
-
248
- class MLP(nn.Module):
249
- """Multi-Layer Perceptron.
250
-
251
- Reference:
252
- Attention Is All You Need.
253
- https://arxiv.org/pdf/1706.03762.pdf.
254
-
255
- """
256
-
257
- def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None:
258
- super().__init__()
259
-
260
- act_fn = config.activation_function if act_fn is None else act_fn
261
- assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
262
-
263
- n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
264
- n_inner = n_inner if n_inner is not None else 4 * config.n_embd
265
-
266
- self.fc1 = nn.Linear(config.n_embd, n_inner)
267
- self.fc2 = nn.Linear(n_inner, config.n_embd)
268
- self.act = ACT2FN[act_fn]
269
-
270
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
271
- old_keys = [prefix + "fc_in.weight", prefix + "fc_out.weight", prefix + "fc_in.bias", prefix + "fc_out.bias"]
272
- new_keys = [prefix + "fc1.weight", prefix + "fc2.weight", prefix + "fc1.bias", prefix + "fc2.bias"]
273
-
274
- if all(k in state_dict for k in old_keys) and not all(k in state_dict for k in new_keys):
275
- # Older version of `MLP` saved with different key names.
276
- for old_key, new_key in zip(old_keys, new_keys):
277
- state_dict[new_key] = state_dict.pop(old_key)
278
-
279
- return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
280
-
281
- def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
282
- hidden_states = self.fc1(hidden_states)
283
- hidden_states = self.act(hidden_states)
284
- hidden_states = self.fc2(hidden_states)
285
-
286
- return hidden_states
287
-
288
-
289
- class FusedMLP(nn.Module):
290
- """Fused Multi-Layer Perceptron from `flash-attn`.
291
-
292
- Reference:
293
- https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/ops/fused_dense.py.
294
-
295
- """
296
- def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None,
297
- raise_on_missing: bool = False) -> None:
298
- super().__init__()
299
-
300
- act_fn = config.activation_function if act_fn is None else act_fn
301
- assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
302
-
303
- n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
304
- n_inner = n_inner if n_inner is not None else 4 * config.n_embd
305
-
306
- gelu_activations = ["gelu_new", "gelu_fast", "gelu_approx"]
307
- activation = "gelu_approx" if act_fn in gelu_activations else "relu"
308
-
309
- self.mlp = MLP(config, n_inner=n_inner, act_fn=act_fn)
310
-
311
- def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
312
- return self.mlp(hidden_states)
313
-
314
- class SelfAttention(nn.Module):
315
- """Implement the scaled dot product attention with softmax.
316
- Adapted from https://github.com/Dao-AILab/flash-attention.
317
- Arguments
318
- ---------
319
- softmax_scale: The temperature to use for the softmax attention.
320
- (default: 1/sqrt(d_keys) where d_keys is computed at
321
- runtime)
322
- attention_dropout: The dropout rate to apply to the attention
323
- (default: 0.0)
324
- """
325
- def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
326
- super().__init__()
327
- self.causal = causal
328
- self.softmax_scale = softmax_scale
329
- self.drop = nn.Dropout(attention_dropout)
330
-
331
- def forward(self, qkv, causal=None, key_padding_mask=None):
332
- """Implements the multihead softmax attention.
333
- Arguments
334
- ---------
335
- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
336
- causal: if passed, will override self.causal
337
- key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
338
- False means to mask out. (B, S)
339
- """
340
- batch_size, seqlen = qkv.shape[0], qkv.shape[1]
341
- causal = self.causal if causal is None else causal
342
- q, k, v = qkv.unbind(dim=2)
343
- softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
344
- scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
345
- if key_padding_mask is not None:
346
- padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype,
347
- device=scores.device)
348
- padding_mask.masked_fill_(key_padding_mask, 0.0)
349
- # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
350
- scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
351
- if causal:
352
- # "triu_tril_cuda_template" not implemented for 'BFloat16'
353
- # So we have to construct the mask in float
354
- causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
355
- # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
356
- scores = scores + causal_mask.to(dtype=scores.dtype)
357
- attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
358
- attention_drop = self.drop(attention)
359
- output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
360
- return output
361
-
362
-
363
- class CrossAttention(nn.Module):
364
- """Implement the scaled dot product attention with softmax.
365
- Adapted from https://github.com/Dao-AILab/flash-attention.
366
- Arguments
367
- ---------
368
- softmax_scale: The temperature to use for the softmax attention.
369
- (default: 1/sqrt(d_keys) where d_keys is computed at
370
- runtime)
371
- attention_dropout: The dropout rate to apply to the attention
372
- (default: 0.0)
373
- """
374
- def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
375
- super().__init__()
376
- self.causal = causal
377
- self.softmax_scale = softmax_scale
378
- self.drop = nn.Dropout(attention_dropout)
379
-
380
- def forward(self, q, kv, causal=None, key_padding_mask=None):
381
- """Implements the multihead softmax attention.
382
- Arguments
383
- ---------
384
- q: The tensor containing the query. (B, Sq, H, D)
385
- kv: The tensor containing the key and value. (B, Sk, 2, H, D)
386
- causal: if passed, will override self.causal
387
- key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
388
- False means to mask out. (B, Sk)
389
- """
390
- batch_size, seqlen_q = q.shape[0], q.shape[1]
391
- causal = self.causal if causal is None else causal
392
- seqlen_k = kv.shape[1]
393
- assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
394
- k, v = kv.unbind(dim=2)
395
- softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
396
- scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
397
- if key_padding_mask is not None:
398
- padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype,
399
- device=scores.device)
400
- padding_mask.masked_fill_(key_padding_mask, 0.0)
401
- # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
402
- scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
403
- if causal:
404
- # "triu_tril_cuda_template" not implemented for 'BFloat16'
405
- # So we have to construct the mask in float
406
- causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
407
- device=scores.device), 1)
408
- # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
409
- scores = scores + causal_mask.to(dtype=scores.dtype)
410
- attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
411
- attention_drop = self.drop(attention)
412
- output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
413
- return output
414
-
415
- def find_mha_dims(
416
- config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None
417
- ) -> Tuple[int, int]:
418
- """Validate and return the number of heads and head dimension for multi-head attention.
419
-
420
- Args:
421
- config: Model configuration.
422
- n_head: Number of heads.
423
- head_dim: Head dimension.
424
-
425
- Returns:
426
- Number of heads and head dimension.
427
-
428
- """
429
-
430
- assert all(
431
- hasattr(config, attr) for attr in ["n_embd", "n_head"]
432
- ), "`config` must have `n_embd` and `n_head` attributes."
433
-
434
- if head_dim is None:
435
- assert (
436
- config.n_embd % config.n_head == 0
437
- ), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."
438
-
439
- if n_head is None and head_dim is None:
440
- head_dim = config.n_embd // config.n_head
441
- n_head = config.n_head
442
- elif n_head is None or head_dim is None:
443
- raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
444
-
445
- return n_head, head_dim
446
-
447
-
448
- class MHA(nn.Module):
449
- """Multi-head attention layer.
450
- Adapted from https://github.com/Dao-AILab/flash-attention."""
451
-
452
- def __init__(
453
- self,
454
- config: PretrainedConfig,
455
- rotary_dim: Optional[int] = None,
456
- n_head: Optional[int] = None,
457
- head_dim: Optional[int] = None,
458
- bias: Optional[bool] = True,
459
- dropout: Optional[float] = 0.0,
460
- softmax_scale: Optional[float] = None,
461
- causal: Optional[bool] = True,
462
- layer_idx: Optional[int] = None,
463
- rotary_emb_scale_base: Optional[float] = None,
464
- return_residual: Optional[bool] = False,
465
- checkpointing: Optional[bool] = False,
466
- device: Optional[str] = None,
467
- dtype: Optional[torch.dtype] = None,
468
- fused_dense: Optional[bool] = True,
469
- flash_attn: Optional[bool] = True,
470
- cutlass_attn: Optional[bool] = False,
471
- flash_rotary: Optional[bool] = True,
472
- raise_on_missing: Optional[bool] = False
473
- ) -> None:
474
- super().__init__()
475
-
476
- factory_kwargs = {"device": device, "dtype": dtype}
477
- n_head, head_dim = find_mha_dims(config, n_head, head_dim)
478
-
479
- self.hidden_size = config.n_embd
480
- self.n_head = n_head
481
- self.head_dim = head_dim
482
- self.op_size = n_head * head_dim
483
-
484
- self.causal = causal
485
- self.layer_idx = layer_idx
486
- self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
487
- self.fused_dense = fused_dense
488
- self.flash_attn = flash_attn
489
- self.cutlass_attn = cutlass_attn
490
- self.flash_rotary = flash_rotary
491
- self.return_residual = return_residual
492
- self.checkpointing = checkpointing
493
-
494
- if self.rotary_emb_dim > 0:
495
- rotary_kwargs = {"device": device}
496
- if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
497
- rotary_kwargs["scale_base"] = rotary_emb_scale_base
498
-
499
- self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
500
- else:
501
- pass
502
-
503
- self.Wqkv = nn.Linear(self.hidden_size, 3 * self.op_size, bias=bias, **factory_kwargs)
504
- self.out_proj = nn.Linear(self.op_size, self.hidden_size, bias=bias, **factory_kwargs)
505
-
506
- self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
507
- self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
508
-
509
- def _update_kv_cache(self, kv: torch.FloatTensor, inference_params: InferenceParams) -> None:
510
- """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
511
- Adapted from https://github.com/Dao-AILab/flash-attention."""
512
-
513
- assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
514
-
515
- return _update_kv_cache(kv, inference_params, self.layer_idx)
516
-
517
- def forward(
518
- self,
519
- x: torch.FloatTensor,
520
- x_kv: Optional[torch.FloatTensor] = None,
521
- key_padding_mask: Optional[torch.BoolTensor] = None,
522
- cu_seqlens: Optional[torch.LongTensor] = None,
523
- max_seqlen: Optional[int] = None,
524
- mixer_subset: Optional[torch.LongTensor] = None,
525
- past_cache: Optional[InferenceParams] = None,
526
- **kwargs
527
- ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
528
- """Perform the forward pass.
529
-
530
- Args:
531
- x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
532
- cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
533
- is the is the sum of the sequence lengths in the batch.
534
- x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
535
- key_padding_mask: boolean mask, True means to keep, False means to mask out.
536
- (batch, seqlen). Only applicable when not using FlashAttention.
537
- cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
538
- of the sequences in the batch, used to index into x. Only applicable when using
539
- FlashAttention.
540
- max_seqlen: int. Maximum sequence length in the batch.
541
- mixer_subset: for cross-attention only. If not None, will take a subset of x
542
- before applying the query projection. Useful for e.g., ViT where we only care
543
- about the CLS token in the last layer.
544
- past_cache: For generation only.
545
-
546
- Returns:
547
- (batch, seqlen, hidden_dim) if cu_seqlens is None and max_seqlen is None,
548
- else (total, hidden_dim) where total is the is the sum of the sequence lengths
549
- in the batch.
550
-
551
- """
552
-
553
- if cu_seqlens is not None:
554
- assert max_seqlen is not None
555
- assert key_padding_mask is None
556
- assert self.flash_attn
557
- assert self.rotary_emb_dim == 0
558
-
559
- if key_padding_mask is not None:
560
- assert cu_seqlens is None
561
- assert max_seqlen is None
562
- assert not self.flash_attn
563
-
564
- if past_cache is not None:
565
- assert key_padding_mask is None
566
- assert cu_seqlens is None and max_seqlen is None
567
-
568
- attn_kwargs = {"key_padding_mask": key_padding_mask}
569
-
570
- assert x_kv is None and mixer_subset is None
571
-
572
- qkv = self.Wqkv(x)
573
- qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
574
-
575
- if past_cache is None:
576
- if self.rotary_emb_dim > 0:
577
- qkv = self.rotary_emb(qkv)
578
- context = self.inner_attn(qkv, **attn_kwargs)
579
-
580
- else:
581
- if self.rotary_emb_dim > 0:
582
- qkv = self.rotary_emb(qkv, seqlen_offset=past_cache.sequence_len_offset)
583
- q = qkv[:, :, 0]
584
- kv = self._update_kv_cache(qkv[:, :, 1:], past_cache)
585
- # If we're processing the prompt, causal=None (use self.causal).
586
- # If we're decoding, then causal=False.
587
- causal = None if past_cache.sequence_len_offset == 0 else False
588
- context = self.inner_cross_attn(q, kv, causal=causal)
589
-
590
- out = rearrange(context, "... h d -> ... (h d)")
591
- out = self.out_proj(out)
592
-
593
- return out if not self.return_residual else (out, x)
594
-
595
- class ParallelBlock(nn.Module):
596
- """Parallel block.
597
-
598
- This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
599
-
600
- """
601
-
602
- def __init__(
603
- self,
604
- config: PretrainedConfig,
605
- mixer: Optional[Dict[str, Any]] = None,
606
- mlp: Optional[Dict[str, Any]] = None,
607
- block_idx: Optional[int] = None,
608
- ) -> None:
609
- super().__init__()
610
-
611
- self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
612
- self.resid_dropout = nn.Dropout(config.resid_pdrop)
613
- self.block_idx = block_idx
614
-
615
- self.mixer = MHA(config=config, **mixer, layer_idx=block_idx)
616
- mlp_cls = mlp.pop('mlp_cls')
617
- if mlp_cls == 'fused_mlp':
618
- self.mlp = FusedMLP(config=config, **mlp)
619
- else:
620
- self.mlp = MLP(config=config, **mlp)
621
-
622
- def forward(self, hidden_states: torch.FloatTensor,
623
- past_cache: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
624
- residual = hidden_states
625
- hidden_states = self.ln(hidden_states)
626
-
627
- attn_outputs = self.mixer(hidden_states, past_cache=past_cache)
628
- if isinstance(attn_outputs, tuple):
629
- attn_outputs = attn_outputs[0]
630
-
631
- attn_outputs = self.resid_dropout(attn_outputs)
632
- feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
633
-
634
- hidden_states = attn_outputs + feed_forward_hidden_states + residual
635
-
636
- return hidden_states
637
-
638
- class CausalLMHead(nn.Module):
639
- """Causal Language Modeling head.
640
-
641
- Reference:
642
- Improving Language Understanding by Generative Pre-Training.
643
- https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
644
-
645
- """
646
-
647
- def __init__(self, config: PretrainedConfig) -> None:
648
- super().__init__()
649
-
650
- self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
651
- self.linear = nn.Linear(config.n_embd, config.vocab_size)
652
-
653
- def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
654
- hidden_states = self.ln(hidden_states)
655
- logits = self.linear(hidden_states).to(torch.float32)
656
-
657
- return logits
658
-
659
-
660
- class CausalLMLoss(nn.Module):
661
- """Causal Language Modeling loss.
662
-
663
- Reference:
664
- Improving Language Understanding by Generative Pre-Training.
665
- https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
666
-
667
- """
668
-
669
- def __init__(self, shift_labels: Optional[bool] = True) -> None:
670
- super().__init__()
671
-
672
- self.shift_labels = shift_labels
673
- self.loss_fct = nn.CrossEntropyLoss()
674
-
675
- def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
676
- if self.shift_labels:
677
- logits = logits[..., :-1, :].contiguous()
678
- labels = labels[..., 1:].contiguous()
679
-
680
- loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
681
-
682
- return loss
683
-
684
- class MixFormerSequentialPreTrainedModel(PreTrainedModel):
685
- """MixFormer (sequential for DeepSpeed) pre-trained model."""
686
-
687
- config_class = MixFormerSequentialConfig
688
- base_model_prefix = "transformer"
689
- supports_gradient_checkpointing = True
690
-
691
- def __init__(self, *inputs, **kwargs) -> None:
692
- super().__init__(*inputs, **kwargs)
693
-
694
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs) -> Dict[str, Any]:
695
- if "use_cache" in kwargs and not kwargs["use_cache"]:
696
- return {"input_ids": input_ids}
697
-
698
- if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
699
- past_key_values = InferenceParams(
700
- max_batch_size=input_ids.shape[0],
701
- max_sequence_len=self.config.n_positions,
702
- sequence_len_offset=0,
703
- batch_size_offset=0,
704
- fused_ft_kernel=False,
705
- key_value_memory_dict={},
706
- )
707
- else:
708
- # assume past_key_values has cached all but last token in input_ids
709
- past_key_values.sequence_len_offset = len(input_ids[0]) - 1
710
- input_ids = input_ids[:, -1].unsqueeze(-1)
711
-
712
- return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs}
713
-
714
-
715
- class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
716
- """MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""
717
-
718
- _keys_to_ignore_on_load_missing = [""]
719
- _keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
720
- _no_split_modules = ["ParallelBlock"]
721
-
722
- def __init__(self, config: MixFormerSequentialConfig) -> None:
723
- super().__init__(config)
724
-
725
- modules = [Embedding(config)]
726
- block_config = config.architecture
727
-
728
- if not isinstance(block_config, list):
729
- block_config = [block_config for _ in range(config.n_layer)]
730
-
731
- if config.n_layer != len(block_config):
732
- config.n_layer = len(block_config)
733
-
734
- for block_idx, block in enumerate(block_config):
735
- # `block_cls` with `legacy` value is for backward compatibility
736
- # `path` key is for backward compatibility
737
- block = copy.deepcopy(block) or {"block_cls": "parallel"}
738
- block_cls = block.pop("path", None) or block.pop("block_cls", None)
739
-
740
- block["block_idx"] = block_idx
741
- modules.append(ParallelBlock(config, **block))
742
-
743
- modules.append(CausalLMHead(config))
744
-
745
- self.layers = nn.Sequential(*modules)
746
- self.loss = CausalLMLoss()
747
-
748
- self.post_init()
749
-
750
- def get_input_embeddings(self) -> nn.Embedding:
751
- return self.layers[0].wte
752
-
753
- def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
754
- self.layers[0].wte = new_embeddings
755
-
756
- def get_output_embeddings(self) -> nn.Linear:
757
- return self.layers[-1].linear
758
-
759
- def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
760
- self.layers[-1].linear = new_embeddings
761
-
762
- def forward(
763
- self, input_ids: torch.LongTensor, labels: Optional[torch.LongTensor] = None,
764
- past_key_values: Optional[torch.FloatTensor] = None, **kwargs
765
- ) -> CausalLMOutputWithPast:
766
-
767
- if not past_key_values:
768
- lm_logits = self.layers(input_ids)
769
- else:
770
- hidden_layer = self.layers[0](input_ids)
771
- for module in self.layers[1:-1]:
772
- hidden_layer = module(hidden_layer, past_cache=past_key_values)
773
- lm_logits = self.layers[-1](hidden_layer)
774
-
775
- loss = None
776
- if labels is not None:
777
- loss = self.loss(lm_logits, labels)
778
-
779
- return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TheOverthinker_phi-1_5/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:324e44d394669786db3285c13b354306b6b1fc3cd6948d3e5d860a501adce930
3
- size 2836629438
 
 
 
 
TheOverthinker_phi-1_5/special_tokens_map.json DELETED
@@ -1,5 +0,0 @@
1
- {
2
- "bos_token": "<|endoftext|>",
3
- "eos_token": "<|endoftext|>",
4
- "unk_token": "<|endoftext|>"
5
- }
 
 
 
 
 
 
TheOverthinker_phi-1_5/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
TheOverthinker_phi-1_5/tokenizer_config.json DELETED
@@ -1,323 +0,0 @@
1
- {
2
- "add_prefix_space": false,
3
- "added_tokens_decoder": {
4
- "50256": {
5
- "content": "<|endoftext|>",
6
- "lstrip": false,
7
- "normalized": false,
8
- "rstrip": false,
9
- "single_word": false,
10
- "special": true
11
- },
12
- "50257": {
13
- "content": " ",
14
- "lstrip": false,
15
- "normalized": true,
16
- "rstrip": false,
17
- "single_word": false,
18
- "special": false
19
- },
20
- "50258": {
21
- "content": " ",
22
- "lstrip": false,
23
- "normalized": true,
24
- "rstrip": false,
25
- "single_word": false,
26
- "special": false
27
- },
28
- "50259": {
29
- "content": " ",
30
- "lstrip": false,
31
- "normalized": true,
32
- "rstrip": false,
33
- "single_word": false,
34
- "special": false
35
- },
36
- "50260": {
37
- "content": " ",
38
- "lstrip": false,
39
- "normalized": true,
40
- "rstrip": false,
41
- "single_word": false,
42
- "special": false
43
- },
44
- "50261": {
45
- "content": " ",
46
- "lstrip": false,
47
- "normalized": true,
48
- "rstrip": false,
49
- "single_word": false,
50
- "special": false
51
- },
52
- "50262": {
53
- "content": " ",
54
- "lstrip": false,
55
- "normalized": true,
56
- "rstrip": false,
57
- "single_word": false,
58
- "special": false
59
- },
60
- "50263": {
61
- "content": " ",
62
- "lstrip": false,
63
- "normalized": true,
64
- "rstrip": false,
65
- "single_word": false,
66
- "special": false
67
- },
68
- "50264": {
69
- "content": " ",
70
- "lstrip": false,
71
- "normalized": true,
72
- "rstrip": false,
73
- "single_word": false,
74
- "special": false
75
- },
76
- "50265": {
77
- "content": " ",
78
- "lstrip": false,
79
- "normalized": true,
80
- "rstrip": false,
81
- "single_word": false,
82
- "special": false
83
- },
84
- "50266": {
85
- "content": " ",
86
- "lstrip": false,
87
- "normalized": true,
88
- "rstrip": false,
89
- "single_word": false,
90
- "special": false
91
- },
92
- "50267": {
93
- "content": " ",
94
- "lstrip": false,
95
- "normalized": true,
96
- "rstrip": false,
97
- "single_word": false,
98
- "special": false
99
- },
100
- "50268": {
101
- "content": " ",
102
- "lstrip": false,
103
- "normalized": true,
104
- "rstrip": false,
105
- "single_word": false,
106
- "special": false
107
- },
108
- "50269": {
109
- "content": " ",
110
- "lstrip": false,
111
- "normalized": true,
112
- "rstrip": false,
113
- "single_word": false,
114
- "special": false
115
- },
116
- "50270": {
117
- "content": " ",
118
- "lstrip": false,
119
- "normalized": true,
120
- "rstrip": false,
121
- "single_word": false,
122
- "special": false
123
- },
124
- "50271": {
125
- "content": " ",
126
- "lstrip": false,
127
- "normalized": true,
128
- "rstrip": false,
129
- "single_word": false,
130
- "special": false
131
- },
132
- "50272": {
133
- "content": " ",
134
- "lstrip": false,
135
- "normalized": true,
136
- "rstrip": false,
137
- "single_word": false,
138
- "special": false
139
- },
140
- "50273": {
141
- "content": " ",
142
- "lstrip": false,
143
- "normalized": true,
144
- "rstrip": false,
145
- "single_word": false,
146
- "special": false
147
- },
148
- "50274": {
149
- "content": " ",
150
- "lstrip": false,
151
- "normalized": true,
152
- "rstrip": false,
153
- "single_word": false,
154
- "special": false
155
- },
156
- "50275": {
157
- "content": " ",
158
- "lstrip": false,
159
- "normalized": true,
160
- "rstrip": false,
161
- "single_word": false,
162
- "special": false
163
- },
164
- "50276": {
165
- "content": " ",
166
- "lstrip": false,
167
- "normalized": true,
168
- "rstrip": false,
169
- "single_word": false,
170
- "special": false
171
- },
172
- "50277": {
173
- "content": " ",
174
- "lstrip": false,
175
- "normalized": true,
176
- "rstrip": false,
177
- "single_word": false,
178
- "special": false
179
- },
180
- "50278": {
181
- "content": " ",
182
- "lstrip": false,
183
- "normalized": true,
184
- "rstrip": false,
185
- "single_word": false,
186
- "special": false
187
- },
188
- "50279": {
189
- "content": " ",
190
- "lstrip": false,
191
- "normalized": true,
192
- "rstrip": false,
193
- "single_word": false,
194
- "special": false
195
- },
196
- "50280": {
197
- "content": " ",
198
- "lstrip": false,
199
- "normalized": true,
200
- "rstrip": false,
201
- "single_word": false,
202
- "special": false
203
- },
204
- "50281": {
205
- "content": " ",
206
- "lstrip": false,
207
- "normalized": true,
208
- "rstrip": false,
209
- "single_word": false,
210
- "special": false
211
- },
212
- "50282": {
213
- "content": " ",
214
- "lstrip": false,
215
- "normalized": true,
216
- "rstrip": false,
217
- "single_word": false,
218
- "special": false
219
- },
220
- "50283": {
221
- "content": " ",
222
- "lstrip": false,
223
- "normalized": true,
224
- "rstrip": false,
225
- "single_word": false,
226
- "special": false
227
- },
228
- "50284": {
229
- "content": " ",
230
- "lstrip": false,
231
- "normalized": true,
232
- "rstrip": false,
233
- "single_word": false,
234
- "special": false
235
- },
236
- "50285": {
237
- "content": " ",
238
- "lstrip": false,
239
- "normalized": true,
240
- "rstrip": false,
241
- "single_word": false,
242
- "special": false
243
- },
244
- "50286": {
245
- "content": " ",
246
- "lstrip": false,
247
- "normalized": true,
248
- "rstrip": false,
249
- "single_word": false,
250
- "special": false
251
- },
252
- "50287": {
253
- "content": "\t\t\t\t\t\t\t\t\t",
254
- "lstrip": false,
255
- "normalized": true,
256
- "rstrip": false,
257
- "single_word": false,
258
- "special": false
259
- },
260
- "50288": {
261
- "content": "\t\t\t\t\t\t\t\t",
262
- "lstrip": false,
263
- "normalized": true,
264
- "rstrip": false,
265
- "single_word": false,
266
- "special": false
267
- },
268
- "50289": {
269
- "content": "\t\t\t\t\t\t\t",
270
- "lstrip": false,
271
- "normalized": true,
272
- "rstrip": false,
273
- "single_word": false,
274
- "special": false
275
- },
276
- "50290": {
277
- "content": "\t\t\t\t\t\t",
278
- "lstrip": false,
279
- "normalized": true,
280
- "rstrip": false,
281
- "single_word": false,
282
- "special": false
283
- },
284
- "50291": {
285
- "content": "\t\t\t\t\t",
286
- "lstrip": false,
287
- "normalized": true,
288
- "rstrip": false,
289
- "single_word": false,
290
- "special": false
291
- },
292
- "50292": {
293
- "content": "\t\t\t\t",
294
- "lstrip": false,
295
- "normalized": true,
296
- "rstrip": false,
297
- "single_word": false,
298
- "special": false
299
- },
300
- "50293": {
301
- "content": "\t\t\t",
302
- "lstrip": false,
303
- "normalized": true,
304
- "rstrip": false,
305
- "single_word": false,
306
- "special": false
307
- },
308
- "50294": {
309
- "content": "\t\t",
310
- "lstrip": false,
311
- "normalized": true,
312
- "rstrip": false,
313
- "single_word": false,
314
- "special": false
315
- }
316
- },
317
- "bos_token": "<|endoftext|>",
318
- "clean_up_tokenization_spaces": true,
319
- "eos_token": "<|endoftext|>",
320
- "model_max_length": 2048,
321
- "tokenizer_class": "CodeGenTokenizer",
322
- "unk_token": "<|endoftext|>"
323
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TheOverthinker_phi-1_5/vocab.json DELETED
The diff for this file is too large to render. See raw diff