File size: 37,445 Bytes
e24ec36 3a7ba3c e24ec36 206a44a e24ec36 206a44a e24ec36 206a44a e24ec36 206a44a e24ec36 206a44a e24ec36 206a44a e24ec36 206a44a e24ec36 3a7ba3c e24ec36 3a7ba3c e24ec36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
import os
import re
import numpy as np
import tensorflow
from keras.callbacks import Callback, ReduceLROnPlateau
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Input, LSTM, Dense, Embedding, Dropout, Flatten
from tensorflow.keras.regularizers import l2
from tensorflow.keras.models import Model, load_model, model_from_json
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
import logging
import heapq
import pickle
import time
import json
import pdb
tensorflow.keras.mixed_precision.set_global_policy('mixed_float16')
class BeamSearchHelper:
def __init__(self, model, tokenizer, max_seq_length, encoder_filename, decoder_filename, top_k=5,
temperature=1.0, top_p=0.9, beam_width=3, scaling_factor=10, min_word=3):
self.model = model
self.tokenizer = tokenizer
self.max_seq_length = max_seq_length
self.top_k = top_k
self.encoder_filename = encoder_filename
self.decoder_filename = decoder_filename
self.temperature = temperature
self.scaling_factor = scaling_factor
self.top_p = top_p
self.beam_width = beam_width
self.min_word = min_word
self.logger = self.setup_logger()
def setup_logger(self):
logger = logging.getLogger("ChatbotBeamSearch")
logger.setLevel(logging.DEBUG)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_formatter = logging.Formatter('%(levelname)s: %(message)s')
console_handler.setFormatter(console_formatter)
logger.addHandler(console_handler)
file_handler = logging.FileHandler("chatbotBeam.log")
file_handler.setLevel(logging.DEBUG)
file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler.setFormatter(file_formatter)
logger.addHandler(file_handler)
return logger
def beam_search(self, input_text):
# Load encoder and decoder models
encoder_model = load_model(self.encoder_filename)
decoder_model = load_model(self.decoder_filename)
# Preprocess input
input_seqs = self.tokenizer.texts_to_sequences([input_text])
input_seqs = pad_sequences(input_seqs, maxlen=self.max_seq_length, padding='post')
# Encode input sequence
encoder_states = encoder_model.predict(input_seqs)
state_h, state_c = encoder_states
# Ensure batch size of 1
state_h = state_h[0:1, :]
state_c = state_c[0:1, :]
# Initialize decoder with <start> token
start_token_index = self.tokenizer.word_index.get('<start>', 1)
target_seq = np.zeros((1, 1))
target_seq[0, 0] = start_token_index
# Initialize beam search candidates
sequences = [(target_seq, state_h, state_c, 0.0, [])] # (seq, h, c, score, decoded_words)
for _ in range(self.max_seq_length):
all_candidates = []
for seq, state_h, state_c, score, decoded_words in sequences:
# Predict the next token
output_tokens, state_h, state_c = decoder_model.predict([seq, state_h, state_c])
logits = output_tokens[0, -1, :] * self.scaling_factor
logits = logits / self.temperature
exp_logits = np.exp(logits - np.max(logits)) # Prevent overflow
probabilities = exp_logits / np.sum(exp_logits)
# Get the top beam_width candidate indices
top_indices = np.argsort(probabilities)[-self.beam_width:]
for idx in top_indices:
prob = probabilities[idx]
candidate_score = (score - np.log(prob + 1e-8)) / (len(decoded_words) + 1) # Normalize by length
# Append predicted token
new_decoded_words = decoded_words + [idx]
new_seq = np.copy(seq)
new_seq[0, 0] = idx # Set new token in sequence
# Enforce min_word before stopping at <end>
if idx == self.tokenizer.word_index.get('<end>', -1):
if len(new_decoded_words) < self.min_word:
continue # Ignore <end> if min_word isn't reached
else:
return " ".join(self.tokenizer.index_word[i] for i in new_decoded_words if i in self.tokenizer.index_word)
# Add to candidate list
all_candidates.append((new_seq, state_h, state_c, candidate_score, new_decoded_words))
# Select best beam_width sequences
if not all_candidates: # If no valid candidates, exit early
break
sequences = sorted(all_candidates, key=lambda x: x[3])[:self.beam_width]
# Convert token indices back to words
best_sequence = sequences[0][4] # Get best decoded words
return " ".join(self.tokenizer.index_word[idx] for idx in best_sequence if idx in self.tokenizer.index_word)
class BeamState:
def __init__(self, sequence, score, state, logger):
self.sequence = sequence
self.score = score
self.state = state
self.logger = logger
def __lt__(self, other):
return self.score < other.score
def log(self, message):
self.logger.debug(message)
class MonitorEarlyStopping(Callback):
def __init__(self, monitor='val_loss', patience=3, mode='min', restore_best_weights=True, verbose=1):
super(MonitorEarlyStopping, self).__init__()
self.monitor = monitor
self.patience = patience
self.mode = mode
self.restore_best_weights = restore_best_weights
self.verbose = verbose
self.best_weights = None
self.best_epoch = None
self.wait = 0
self.best_value = float('inf') if mode == 'min' else -float('inf')
self.stopped_epoch_list = [] # List to track stopped epochs
def on_epoch_end(self, epoch, logs=None):
current_value = logs.get(self.monitor)
if current_value is None:
if self.verbose > 0:
print(f"Warning: Metric '{self.monitor}' is not available in logs.")
return
# Check for improvement based on mode
if (self.mode == 'min' and current_value < self.best_value) or (self.mode == 'max' and current_value > self.best_value):
self.best_value = current_value
self.best_weights = self.model.get_weights()
self.best_epoch = epoch
self.wait = 0
if self.verbose > 0:
print(f"Epoch {epoch + 1}: {self.monitor} improved to {self.best_value:.4f}")
else:
self.wait += 1
if self.verbose > 0:
print(f"Epoch {epoch + 1}: {self.monitor} did not improve. Patience: {self.wait}/{self.patience}")
self.stopped_epoch_list.append(epoch + 1)
# Stop training if patience is exceeded
if self.wait >= self.patience:
if self.verbose > 0:
print(f"Stopping early at epoch {epoch + 1}. Best {self.monitor}: {self.best_value:.4f} at epoch {self.best_epoch + 1}")
self.model.stop_training = True
if self.restore_best_weights:
if self.verbose > 0:
print(f"Restoring best model weights from epoch {self.best_epoch + 1}.")
self.model.set_weights(self.best_weights)
class ChatbotTrainer:
def __init__(self):
# Corpus Setup
self.corpus = None
self.all_vocab_size = 0
# Model Setup
self.model = None
self.name = "Alex"
self.model_filename = f"{self.name}_model.keras"
self. encoder_filename = "encoder.keras"
self.decoder_filename = "decoder.keras"
self.tokenizer_save_path = "chatBotTokenizer.pkl"
self.tokenizer = None
self.reverse_tokenizer = None
self.embedding_dim = 64
self.max_seq_length = 64
self.learning_rate = 0.0013
self.optimizer = Adam(learning_rate=self.learning_rate, clipnorm=1.0)
self.batch_size = 16
self.epochs = 30
self.early_patience = self.epochs // 2
self.lstm_units = 128
self.dropout = 0.1
self.recurrent_dropout = 0.1
self.test_size = 0.2
self.max_vocabulary = 69000
# Model but instantiated here but filled later
self.encoder_model = None
self.encoder_inputs = None
self.decoder_inputs = None
self.decoder_outputs = None
self.decoder_model = None
self.max_vocab_size = None
self.config = None
# Training Setup
self.vocabularyList = []
self.troubleList = []
self.running_trouble = []
# Prediction Setup (Everything here will take priority)
self.min_word = 10 # Only for generate_response
self.temperature = 1
self.scaling_factor = 1
self.logger = self.setup_logger() # Initialize your logger here
self.beam_width = 9
self.top_p = 0.7
self.top_k = 3
# Log Metrics...
self.logger.info(f"""Metrics:\n
Embedding/MaxSeqLength:({self.embedding_dim}, {self.max_seq_length})\n
Batch Size: {self.batch_size}\n
LSTM Units: {self.lstm_units}\n
Epochs: {self.epochs}\n
Dropout: ({self.dropout}, {self.recurrent_dropout})\n
Test Split: {self.test_size}\n\n""")
# Tokenizer setup & propagation
if os.path.exists(self.tokenizer_save_path):
with open(self.tokenizer_save_path, 'rb') as tokenizer_load_file:
self.tokenizer = pickle.load(tokenizer_load_file)
self.reverse_tokenizer = {index: word for word, index in self.tokenizer.word_index.items()}
self.all_vocab_size = self.tokenizer.num_words
for words, i in self.tokenizer.word_index.items():
if words not in self.vocabularyList:
self.vocabularyList.append(words)
self.logger.info("Tokenizer loaded successfully.")
# print(f"Number of words in loaded tokenizer: {len(self.tokenizer.word_index)}")
# print(f"Number of words in the Vocab List: {len(self.vocabularyList)}")
else:
self.logger.warning("Tokenizer not found, making now... ")
self.tokenizer = Tokenizer(num_words=None, filters='!"#$%&()*+,-/.:;=?@[\\]^_`{|}~\t\n')
# Save '<OOV>', '<start>', and '<end>' to word index
self.tokenizer.num_words = 0
self.vocabularyList = ['<start>', '<end>']
for token in self.vocabularyList:
if token not in self.tokenizer.word_index:
self.tokenizer.word_index[token] = self.tokenizer.num_words
self.tokenizer.index_word[self.tokenizer.num_words] = token
self.all_vocab_size += 1
self.tokenizer.num_words += 1
# Set Tokenizer Values:
self.tokenizer.num_words = len(self.tokenizer.word_index)
self.tokenizer.oov_token = "<oov>"
self.logger.info(f"New Tokenizer Index's: {self.tokenizer.word_index}")
# Debug Lines
# for token in ['<start>', '<end>', '<oov>']:
# print(f"Index of {token}: {self.tokenizer.word_index.get(token)}")
# Debug Line
# print(list(self.tokenizer.word_index.keys()))
if os.path.exists(self.model_filename) and os.path.exists(self.encoder_filename) and os.path.exists(self.decoder_filename):
self.model, self.encoder_model, self.decoder_model =self.load_model_file()
def save_full_weights(self, encoder_path="encoder.weights.h5", decoder_path="decoder.weights.h5"):
if self.encoder_model is not None and self.decoder_model is not None:
if os.path.exists(encoder_path):
os.remove(encoder_path)
if os.path.exists(decoder_path):
os.remove(decoder_path)
self.encoder_model.save_weights(encoder_path)
self.decoder_model.save_weights(decoder_path)
self.logger.info(f"Encoder weights saved at {encoder_path}.")
self.logger.info(f"Decoder weights saved at {decoder_path}.")
else:
self.logger.warning(
"Encoder or Decoder model does not exist. Ensure models are initialized before saving weights.")
def load_corpus(self, corpus_path):
import convokit
self.logger.info("Loading and preprocessing corpus...")
self.corpus = convokit.Corpus(filename=corpus_path)
self.logger.info("Corpus loaded and preprocessed successfully.")
def load_full_weights(self, encoder_path="encoder.weights.h5", decoder_path="decoder.weights.h5"):
if self.encoder_model is not None and self.decoder_model is not None:
self.encoder_model.load_weights(encoder_path)
self.decoder_model.load_weights(decoder_path)
self.logger.info(f"Encoder weights loaded from {encoder_path}.")
self.logger.info(f"Decoder weights loaded from {decoder_path}.")
else:
self.logger.warning(
"Encoder or Decoder model does not exist. Ensure models are initialized before loading weights.")
def plot_and_save_training_metrics(self, history, speaker):
# Plot training metrics such as loss and accuracy
plt.figure(figsize=(10, 6))
# Plot training loss
plt.subplot(1, 2, 1)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
# Plot training accuracy
plt.subplot(1, 2, 2)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
# Save the plot as an image file
# plot_filename = f"{speaker}_training_metrics.png"
# plt.tight_layout()
# plt.savefig(plot_filename) # Save the plot as an image
# plt.close() # Close the plot to free up memory
return "Did Not Save in Jupyter Notebook. See plot_and_save_training_metrics"
def setup_logger(self):
logger = logging.getLogger("ChatbotTrainer")
logger.setLevel(logging.DEBUG)
# Create console handler and set level to INFO for progress reports
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_formatter = logging.Formatter('%(levelname)s: %(message)s')
console_handler.setFormatter(console_formatter)
logger.addHandler(console_handler)
# Create a file handler and set level to DEBUG for progress reports and ERROR for error notifications
file_handler = logging.FileHandler("chatbot.log")
file_handler.setLevel(logging.DEBUG) # Set level to DEBUG to capture progress reports
file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler.setFormatter(file_formatter)
logger.addHandler(file_handler)
return logger
# This function allows to reformat the embedding weights to a new max_vocabulary
# If max_vocabulary(defined in build_model) is changed incrementally (or set large to begin with; this is N/A)
def redo_embeddings(self):
# Get current embedding weights
old_embedding_weights = self.model.get_layer("embedding").get_weights()[0]
# Define new max vocabulary size
new_vocab_size = self.max_vocabulary # Set this to the updated size
embedding_dim = old_embedding_weights.shape[1]
# Expand the embedding matrix
new_embedding_weights = np.random.normal(size=(new_vocab_size, embedding_dim)) # Initialize new words randomly
new_embedding_weights[:old_embedding_weights.shape[0], :] = old_embedding_weights # Keep old weights
# Replace the embedding layer
self.model.get_layer("embedding").set_weights([new_embedding_weights])
def save_tokenizer(self, texts=None):
if self.tokenizer:
if texts:
for token in texts:
if token not in self.tokenizer.word_index and self.tokenizer.num_words < self.max_vocabulary:
self.tokenizer.word_index[token] = self.tokenizer.num_words
self.all_vocab_size += 1
self.tokenizer.num_words += 1
# Debug Line
# print(f"Word: {token}\nIndex: {self.tokenizer.num_words}")
self.max_vocab_size = self.tokenizer.num_words
self.tokenizer.fit_on_texts(texts)
with open(self.tokenizer_save_path, 'wb') as tokenizer_save_file:
pickle.dump(self.tokenizer, tokenizer_save_file)
self.tokenizer.num_words = len(self.tokenizer.word_index)
elif self.tokenizer == None:
self.logger.warning("No tokenizer to save.")
def save_embedding_weights(self, filepath="embedding_weights.npy"):
if self.model is not None:
embedding_layer = self.model.get_layer('embedding')
# Extract the weights
embedding_weights = embedding_layer.get_weights()[0] # Weights are stored as a list, take the first element
# Save weights to a file
if os.path.exists(filepath):
os.remove(filepath)
np.save(filepath, embedding_weights)
self.logger.info(f"Embedding weights saved successfully at {filepath}.")
else:
self.logger.warning("No model exists to extract embedding weights.")
def load_embedding_weights(self, filepath="embedding_weights.npy"):
if self.model is not None:
embedding_layer = self.model.get_layer('embedding')
# Load weights from the file
embedding_weights = np.load(filepath)
# Ensure the weights shape matches the layer's expected shape
if embedding_layer.input_dim == embedding_weights.shape[0] and embedding_layer.output_dim == \
embedding_weights.shape[1]:
embedding_layer.set_weights([embedding_weights])
self.logger.info(f"Embedding weights loaded successfully from {filepath}.")
else:
self.logger.error("Mismatch in embedding weights shape. Ensure the model and weights are compatible.")
else:
self.logger.warning("No model exists to load embedding weights into.")
def clean_text(self, text):
txt = text.lower().strip()
# Contraction mapping (expanded)
contractions = {
"i'm": "i am", "he's": "he is", "she's": "she is", "that's": "that is",
"what's": "what is", "where's": "where is", "who's": "who is", "how's": "how is",
"it's": "it is", "let's": "let us", "they're": "they are", "we're": "we are",
"you're": "you are", "i've": "i have", "you've": "you have", "we've": "we have",
"they've": "they have", "i'd": "i would", "you'd": "you would", "he'd": "he would",
"she'd": "she would", "we'd": "we would", "they'd": "they would", "i'll": "i will",
"you'll": "you will", "he'll": "he will", "she'll": "she will", "we'll": "we will",
"they'll": "they will", "don't": "do not", "doesn't": "does not", "didn't": "did not",
"won't": "will not", "wouldn't": "would not", "can't": "cannot", "couldn't": "could not",
"shouldn't": "should not", "mightn't": "might not", "mustn't": "must not",
"isn't": "is not", "aren't": "are not", "wasn't": "was not", "weren't": "were not",
"haven't": "have not", "hasn't": "has not", "hadn't": "had not"
}
# Expand contractions
for contraction, expansion in contractions.items():
txt = re.sub(r"\b" + re.escape(contraction) + r"\b", expansion, txt)
# Remove unwanted characters but keep apostrophes
txt = re.sub(r"[^a-zA-Z0-9' ]", " ", txt) # Keep words, numbers, and apostrophes
txt = re.sub(r"\s+", " ", txt).strip() # Remove extra spaces
# Preserve words in vocabulary list
for word in txt.split():
if word not in self.vocabularyList:
self.vocabularyList.append(word)
self.save_tokenizer(self.vocabularyList)
return txt
# Training
def preprocess_texts(self, input_texts, target_texts):
input_texts = [self.clean_text(text) for text in input_texts.split(" ")]
target_texts = [self.clean_text(text) for text in target_texts.split(" ")]
# Initialize lists to store processed inputs and targets
input_texts = [f"<start> {texts} <end>" for texts in input_texts if input_texts and input_texts != ""]
target_texts = [f"<start> {texts} <end>" for texts in target_texts if target_texts and target_texts != ""]
input_sequences = self.tokenizer.texts_to_sequences(input_texts)
target_sequences = self.tokenizer.texts_to_sequences(target_texts)
input_sequences = pad_sequences(input_sequences, maxlen=self.max_seq_length, padding='post')
target_sequences = pad_sequences(target_sequences, maxlen=self.max_seq_length, padding='post')
# Ensure target_sequences has enough samples
if target_sequences.shape[0] != input_sequences.shape[0]:
print(f"Padding mismatch! Input: {input_sequences.shape}, Target: {target_sequences.shape}")
if target_sequences.shape[0] < input_sequences.shape[0]:
target_sequences = np.resize(target_sequences, input_sequences.shape)
if target_sequences.shape[0] > input_sequences.shape[0]:
target_sequences = np.resize(input_sequences, target_sequences.shape)
return input_sequences, target_sequences
# Prediction
def preprocess_input(self, texts):
preprocessed_input = ["<start>"]
texts = self.clean_text(texts)
preprocessed_text = texts.lower().split(" ")
preprocessed_input.extend(preprocessed_text)
preprocessed_input.append("<end>")
# Convert words to token IDs
preprocessed_input = self.tokenizer.texts_to_sequences([preprocessed_input])
preprocessed_input = [item for sublist in preprocessed_input for item in sublist] # Flatten
preprocessed_input = np.array(preprocessed_input).reshape(1, -1) # (1, length)
preprocessed_input = pad_sequences(preprocessed_input, maxlen=self.max_seq_length, padding='post')
# ("Final Input Shape:", preprocessed_input.shape) # Debugging
return preprocessed_input
def build_model(self):
if not self.model:
# Encoder
self.encoder_inputs = Input(shape=(self.max_seq_length,))
encoder_embedding = Embedding(
input_dim=self.max_vocabulary,
output_dim=self.embedding_dim,
mask_zero=True,
embeddings_regularizer=l2(0.01)
)(self.encoder_inputs)
encoder_lstm = LSTM(
self.lstm_units,
return_state=True,
return_sequences=False,
dropout=self.dropout,
recurrent_dropout=self.recurrent_dropout
)
_, state_h, state_c = encoder_lstm(encoder_embedding)
encoder_states = [state_h, state_c]
self.encoder_model = Model(self.encoder_inputs, encoder_states)
# Decoder
self.decoder_inputs = Input(shape=(None,), name='decoder_input')
decoder_embedding = Embedding(
input_dim=self.max_vocabulary,
output_dim=self.embedding_dim,
mask_zero=True
)(self.decoder_inputs)
decoder_lstm = LSTM(
self.lstm_units,
return_sequences=True,
return_state=True,
dropout=self.dropout,
recurrent_dropout=self.recurrent_dropout,
kernel_regularizer=l2(0.001)
)
decoder_state_input_h = Input(shape=(self.lstm_units,))
decoder_state_input_c = Input(shape=(self.lstm_units,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm_output, state_h, state_c = decoder_lstm(decoder_embedding, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_dense = Dense(self.max_vocabulary, activation='softmax', kernel_regularizer=l2(0.001), bias_regularizer=l2(0.001))
self.decoder_outputs = decoder_dense(decoder_lstm_output)
self.decoder_model = Model([self.decoder_inputs] + decoder_states_inputs,
[self.decoder_outputs] + decoder_states)
# Combine encoder and decoder into the full model
decoder_lstm_output, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)
self.decoder_outputs = decoder_dense(decoder_lstm_output)
self.model = Model([self.encoder_inputs, self.decoder_inputs], self.decoder_outputs)
self.model.compile(
optimizer=self.optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
return self.model, self.encoder_model, self.decoder_model
def load_model_config(self, config_filename="model_config.json"):
if os.path.exists(config_filename):
with open(config_filename, "r", encoding="utf-8") as f:
data = json.load(f)
self.logger.info(f"Loading model config from {config_filename}")
# Rebuild model from config
self.model = model_from_json(data["model_config"])
# Rebuild optimizer
self.optimizer = Adam.from_config(data["optimizer"])
# Compile model with restored optimizer
self.model.compile(
optimizer=self.optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
self.logger.info("Model compiled successfully after loading config.")
return self.model
return None
def train_model(self, input_texts, target_texts, conversation_id, speaker):
# We Define running_trouble at the start of a new training
self.running_trouble = []
# We make sure everything to do with the model is loaded properly, or generated if it doesn't exist
loaded_model = self.load_model_config(config_filename="model_config.json")
if os.path.exists(self.model_filename) and os.path.exists(self.encoder_filename) and os.path.exists(
self.decoder_filename):
self.model, self.encoder_model, self.decoder_model = self.load_model_file()
self.logger.info("Loaded full model from saved files.")
elif not os.path.exists(self.model_filename) and not os.path.exists(self.encoder_filename) and not os.path.exists(
self.decoder_filename) and loaded_model:
self.model = loaded_model
elif not self.model and not self.encoder_model and not self.decoder_model:
self.logger.info("Building new model...")
self.model, self.encoder_model, self.decoder_model = self.build_model()
# Once everything loads properly we start training:
self.logger.info(f"Training Model for ConversationID: {conversation_id}")
if self.corpus is None or self.tokenizer is None:
raise ValueError("Corpus or tokenizer is not initialized.")
# Preprocess the texts into sequences
input_sequences, target_sequences = self.preprocess_texts(input_texts, target_texts)
# Debug Lines
# for token in ['<start>', '<end>', '<oov>']:
# print(f"Index of {token}: {self.tokenizer.word_index.get(token)}")
# Stats
self.logger.info(f"Num Words: {self.tokenizer.num_words}")
self.logger.info(f"Vocabulary Size: {len(self.tokenizer.word_index)}")
self.logger.info(f"Length of Vocabulary List: {len(self.vocabularyList)}")
# Prepare training data
encoder_input_data = input_sequences
decoder_input_data = target_sequences[:, :-1]
decoder_target_data = target_sequences[:, 1:]
self.logger.info(f"Encoder Input Data Shape: {encoder_input_data.shape}")
self.logger.info(f"Decoder Input Data Shape: {decoder_input_data.shape}")
self.logger.info(f"Decoder Target Data Shape: {decoder_target_data.shape}")
# Instantiate the callback
early_stopping = MonitorEarlyStopping(
monitor='val_loss',
patience=self.early_patience,
mode='min',
restore_best_weights=True,
verbose=1
)
lr_patience = self.early_patience // 3
lr_scheduler = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=lr_patience, verbose=1)
# Train the model
history = self.model.fit(
[encoder_input_data, decoder_input_data],
np.expand_dims(decoder_target_data, -1),
batch_size=self.batch_size,
epochs=self.epochs,
validation_split=self.test_size,
callbacks=[early_stopping, lr_scheduler]
)
# Log any early stopping events
if len(early_stopping.stopped_epoch_list) > 0:
self.troubleList.append(speaker)
# Reset stopped epoch list & save to running trouble
self.running_trouble = [item for item in early_stopping.stopped_epoch_list]
early_stopping.stopped_epoch_list = []
# Evaluate the model on the training data
test_loss, test_accuracy = self.model.evaluate(
[encoder_input_data, decoder_input_data],
np.expand_dims(decoder_target_data, -1),
batch_size=self.batch_size
)
# Save training metrics as a plot
plot_filename = self.plot_and_save_training_metrics(history, speaker)
self.logger.info(f"Training metrics plot saved as {plot_filename}")
self.logger.info(f"Test loss for Conversation {speaker}: {test_loss}")
self.logger.info(f"Test accuracy for Conversation {speaker}: {test_accuracy}")
self.logger.info(f"Model trained and saved successfully for speaker: {speaker}")
# Compile the model before saving
self.model.compile(
optimizer=self.optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
# Save the model after training
self.save_tokenizer(self.vocabularyList)
self.save_model(self.model, self.encoder_model, self.decoder_model)
def save_model(self, model, encoder_model, decoder_model):
self.logger.info("Saving Model...")
if model:
self.encoder_model.save(self.encoder_filename)
self.logger.info("Encoder saved.")
time.sleep(1)
self.decoder_model.save(self.decoder_filename)
self.logger.info("Decoder saved.")
time.sleep(1)
self.model.save(self.model_filename)
self.logger.info("Model saved.")
time.sleep(1)
self.save_full_weights()
self.save_embedding_weights()
else:
self.logger.warning("No model to save.")
def load_model_file(self):
self.logger.info("Loading Model and Tokenizer...")
# Load model without the optimizer first
model = load_model(self.model_filename, compile=False)
# Manually recompile with a fresh Adam optimizer
self.optimizer = Adam(learning_rate=self.learning_rate, clipnorm=1.0)
model.compile(optimizer=self.optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
print("Model Loaded... \nNow loading encoder/decoder models... ")
encoder_model = load_model(self.encoder_filename)
decoder_model = load_model(self.decoder_filename)
print("Decoder and Encoder Loaded... ")
self.load_full_weights()
self.load_embedding_weights()
return model, encoder_model, decoder_model
def beam_search(self, input_text):
# Preprocess input to match generate_response format
input_seq = self.preprocess_input(input_text)
# Perform beam search using the BeamSearchHelper class
beam_search_helper = BeamSearchHelper(
model=self.model,
tokenizer=self.tokenizer,
max_seq_length=self.max_seq_length,
encoder_filename=self.encoder_filename,
decoder_filename=self.decoder_filename,
top_k=self.top_k,
temperature=self.temperature,
top_p=self.top_p,
beam_width=self.beam_width,
scaling_factor=self.scaling_factor
)
# Perform beam search
output_seq = beam_search_helper.beam_search(input_seq)
# Convert token indices back to words
output_words = [self.tokenizer.index_word[idx] for idx in output_seq if idx in self.tokenizer.index_word]
return " ".join(output_words)
def generate_response(self, input_seq):
try:
# Clean and tokenize input text
input_seqs = self.preprocess_input(input_seq)
# Encode the input sequence using the encoder model
encoder_states = self.encoder_model.predict(input_seqs)
state_h, state_c = encoder_states
state_h = state_h[0:1, :] # Ensure batch size 1
state_c = state_c[0:1, :]
# Initialize the decoder input with the <start> token
start_token_index = self.tokenizer.word_index.get('<start>', 1)
target_seq = np.zeros((1, 1))
target_seq[0, 0] = start_token_index
# Debugging before passing to the decoder
# print(f"Initial Target Seq Shape: {target_seq.shape}, state_h Shape: {state_h.shape}, state_c Shape: {state_c.shape}")
# Decode the sequence
decoded_sentence = []
for _ in range(self.max_seq_length):
output_tokens, state_h, state_c = self.decoder_model.predict([target_seq, state_h, state_c])
# Scale logits immediately after getting output_tokens
logits = output_tokens[0, -1, :] * self.scaling_factor
logits = logits / self.temperature
logits = np.clip(logits, -50, 50)
# Compute softmax
exp_logits = np.exp(logits - np.max(logits)) # Prevent overflow
probabilities = exp_logits / np.sum(exp_logits)
probabilities = exp_logits / (np.sum(exp_logits) + 1e-8)
predicted_token_index = np.random.choice(len(probabilities), p=probabilities)
predicted_word = self.reverse_tokenizer.get(predicted_token_index, '<oov>')
print(f"Logits: {logits[:10]}") # Debugging (First 10 values)
print(f"Softmax Probabilities: {probabilities[:10]}") # Debugging
if predicted_word == "<end>" and len(
decoded_sentence) < self.min_word:
continue
elif predicted_word == "<end>":
break
if predicted_word not in ["<oov>", "<start>", "<end>"]:
decoded_sentence.append(predicted_word)
# Update target sequence for the next iteration
target_seq[0, 0] = predicted_token_index
return " ".join(decoded_sentence).strip()
except Exception as e:
self.logger.error(f"Error in generate_response: {str(e)}")
return "Error"
|