File size: 18,955 Bytes
64ae4c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
# This training script is a duplicate of the Training.ipynb notebook but can be invoked from the terminal
import os
print(os.getcwd())
os.environ["PATH"]="/usr/local/cuda-11.7/bin:"+os.getenv("PATH")
os.system('pip uninstall -y torch')
os.system('pip uninstall -y einops')
os.system('pip uninstall -y transformers')
os.system('pip uninstall -y sentence_transformers')
os.system('pip uninstall -y datasets')
os.system('pip uninstall -y sagemaker')
os.system('pip uninstall -y smart_open')
os.system('pip uninstall -y pynvml')
os.system('pip install -r lodestone-reqs.txt')
os.system('pip install -e ./sentence-transformers')
os.system('pip uninstall -y triton')
os.system('pip install --no-deps triton==2.0.0.dev20221202')
#####
from pynvml import *
import math
from sentence_transformers import models, losses
from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample
import logging
import os
import json
import torch
import boto3
from smart_open import open
import random
import time
import gc
os.environ["PATH"]="/usr/local/cuda-11.7/bin:"+os.getenv("PATH")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
#####
def print_gpu_utilization():
"This helper function outputs the current GPU memory usage."
nvmlInit()
handle = nvmlDeviceGetHandleByIndex(0)
info = nvmlDeviceGetMemoryInfo(handle)
return f"GPU memory occupied: {info.used/1024**3} GB."
#####
class MultiDatasetDataLoader:
"""
This custom dataloader class consumes a list of datasets and a batch size and produces batches randomly sampled
from the datasets provided where each batch consists of records from a single dataset and datasets are chosen
for batches in proportion to their total number of records.
"""
def __init__(self, datasets, batch_size_pairs, batch_size_triplets=None, dataset_size_temp=-1, allow_swap=True):
self.allow_swap = allow_swap
self.batch_size_pairs = batch_size_pairs
self.batch_size_triplets = batch_size_pairs if batch_size_triplets is None else batch_size_triplets
# Compute dataset weights
self.dataset_lengths = list(map(len, datasets))
self.dataset_lengths_sum = sum(self.dataset_lengths)
weights = []
# if dataset_size_temp > 0: # Scale probability with dataset size
# for dataset in datasets:
# prob = len(dataset) / self.dataset_lengths_sum
# weights.append(max(1, int(math.pow(prob, 1 / dataset_size_temp) * 1000)))
# else: # Equal weighting of all datasets
# weights = [100] * len(datasets)
for dataset in datasets:
weights.append(len(dataset))
# logging.info("Dataset lengths and weights: {}".format(list(zip(self.dataset_lengths, weights))))
self.dataset_idx = []
self.dataset_idx_pointer = 0
for idx, weight in enumerate(weights):
self.dataset_idx.extend([idx] * weight)
random.shuffle(self.dataset_idx)
self.datasets = []
for dataset in datasets:
random.shuffle(dataset)
self.datasets.append({
'elements': dataset,
'pointer': 0,
})
def __iter__(self):
for _ in range(int(self.__len__())):
# Select dataset
if self.dataset_idx_pointer >= len(self.dataset_idx):
self.dataset_idx_pointer = 0
random.shuffle(self.dataset_idx)
dataset_idx = self.dataset_idx[self.dataset_idx_pointer]
self.dataset_idx_pointer += 1
# Select batch from this dataset
dataset = self.datasets[dataset_idx]
batch_size = self.batch_size_pairs if len(dataset['elements'][0].texts) == 2 else self.batch_size_triplets
batch = []
texts_in_batch = set()
guid_in_batch = set()
while len(batch) < batch_size:
example = dataset['elements'][dataset['pointer']]
valid_example = True
# First check if one of the texts in already in the batch
for text in example.texts:
text_norm = text.strip().lower()
if text_norm in texts_in_batch:
valid_example = False
texts_in_batch.add(text_norm)
# If the example has a label, check if label is in batch
if example.guid is not None:
valid_example = valid_example and example.guid not in guid_in_batch
guid_in_batch.add(example.guid)
if valid_example:
if self.allow_swap and random.random() > 0.5:
example.texts[0], example.texts[1] = example.texts[1], example.texts[0]
batch.append(example)
dataset['pointer'] += 1
if dataset['pointer'] >= len(dataset['elements']):
dataset['pointer'] = 0
random.shuffle(dataset['elements'])
yield self.collate_fn(batch) if self.collate_fn is not None else batch
def __len__(self):
return int(self.dataset_lengths_sum / self.batch_size_pairs)
#####
# These four classes of custom generators parse the raw data from the files in S3 and format it into InputExamples which can be properly interpreted by a SentenceTransformer model.
class RedditTitleBodyDataset:
def __init__(self, source_uri, max_seq_length):
self.source_uri = source_uri
self.s3_client = boto3.client("s3")
self.max_seq_length = max_seq_length
def __iter__(self):
while True:
for json_line in open(self.source_uri, transport_params={"client": self.s3_client}):
data_line = json.loads(json_line.strip())
if "title" in data_line and "body" in data_line:
data = {'guid': None, 'texts': [" ".join(data_line['title'].split(" ")[:self.max_seq_length]), " ".join(data_line['body'].split(" ")[:self.max_seq_length])]}
record = InputExample(guid=data.get('guid', None), texts=data['texts'])
yield record
class RedditYearDataset:
def __init__(self, source_uri, max_seq_length):
self.source_uri = source_uri
self.s3_client = boto3.client("s3")
self.max_seq_length = max_seq_length
def __iter__(self):
while True:
for json_line in open(self.source_uri, transport_params={"client": self.s3_client}):
data_line = json.loads(json_line.strip())
if "response" in data_line and "context" in data_line:
data = {'guid': None, 'texts': [" ".join(data_line['response'].split(" ")[:self.max_seq_length]), " ".join(data_line['context'].split(" ")[:self.max_seq_length])]}
record = InputExample(guid=data.get('guid', None), texts=data['texts'])
yield record
class HuggingFaceQueryPosDataset:
def __init__(self, source_uri, max_seq_length):
self.source_uri = source_uri
self.s3_client = boto3.client("s3")
self.max_seq_length = max_seq_length
def __iter__(self):
while True:
for json_line in open(self.source_uri, transport_params={"client": self.s3_client}):
data_line = json.loads(json_line.strip())
if "query" in data_line and "pos" in data_line:
for i in range(len(data_line['pos'])):
data = {'guid': None, 'texts': [" ".join(data_line['query'].split(" ")[:self.max_seq_length]), " ".join(data_line['pos'][i].split(" ")[:self.max_seq_length])]}
record = InputExample(guid=data.get('guid', None), texts=data['texts'])
yield record
class Dataset:
def __init__(self, source_uri, max_seq_length):
self.source_uri = source_uri
self.s3_client = boto3.client("s3")
self.max_seq_length = max_seq_length
def __iter__(self):
while True:
for json_line in open(self.source_uri, transport_params={"client": self.s3_client}):
data_line = json.loads(json_line.strip())
if not isinstance(data_line, dict):
data = {'guid': None, 'texts': data_line}
for text_idx in range(len(data['texts'])):
data['texts'][text_idx] = " ".join(data['texts'][text_idx].split(" ")[:self.max_seq_length])
record = InputExample(guid=data.get('guid', None), texts=data['texts'])
else:
for text_idx in range(len(data_line['texts'])):
data_line['texts'][text_idx] = " ".join(data_line['texts'][text_idx].split(" ")[:self.max_seq_length])
record = InputExample(guid=data_line.get('guid', None), texts=data_line['texts'])
yield record
#####
def build_generators(data_records, max_seq_length=512, testing=False):
"""
This function consumes the data_records dictionary and creates a new dictionary of data generators where each entry is
of the form {filename: data generator object}.
"""
if testing:
# filepaths = [file for file in list(data_records.keys()) if file.startswith('S2ORC') or file.startswith('reddit_')]
filepaths = [file for file in list(data_records.keys())][:3]
else:
filepaths = list(data_records.keys())
generators = {}
for filepath in filepaths:
filepath = filepath.strip()
source_uri = 's3://lodestone-rnd/data/'+filepath
if filepath in ['S2ORC_citations_abstracts.json.gz', 'amazon-qa.json.gz'] or 'reddit' in filepath:
if "title" in filepath:
generators[f'{filepath.split(".")[0]}'] = iter(RedditTitleBodyDataset(source_uri, max_seq_length))
elif "reddit" in filepath:
generators[f'{filepath.split(".")[0]}'] = iter(RedditYearDataset(source_uri, max_seq_length))
else:
generators[f'{filepath.split(".")[0]}'] = iter(HuggingFaceQueryPosDataset(source_uri, max_seq_length))
else:
generators[f'{filepath.split(".")[0]}'] = iter(Dataset(source_uri, max_seq_length))
return generators
#####
def produce_data(data_records, num_chunks, generators, batch_size, failed_on=None, first_iter=False, testing=False, temp=-1):
"""
This function consumes the data_records dictionary, the number of chunks to break the datasets into, the dictionary of
data generators, and a batch size and returns a MultiDatasetDataloader which can be fed into the .fit method of a
SentenceTransformer model.
"""
if testing:
# filepaths = [file for file in list(data_records.keys()) if file.startswith('S2ORC') or file.startswith('reddit_')]
filepaths = [file for file in list(data_records.keys())][:3]
else:
filepaths = list(data_records.keys())
datasets = []
for file_idx, filepath in enumerate(filepaths):
filepath = filepath.strip()
dataset = []
if failed_on is not None and failed_on != 1 and first_iter:
for k in range((failed_on-1)*max(1, data_records[filepath]//num_chunks)):
next(generators[f'{filepath.split(".")[0]}'])
for m in range(max(1, data_records[filepath]//num_chunks)):
dataset.append(next(generators[f'{filepath.split(".")[0]}']))
else:
for n in range(max(1, data_records[filepath]//num_chunks)):
dataset.append(next(generators[f'{filepath.split(".")[0]}']))
datasets.append(dataset)
logging.info("{}. {}: {}".format(file_idx+1, filepath, len(dataset)))
dataset_lengths_sum = sum(list(map(len, datasets)))
batch_size_pairs = batch_size_triplets = batch_size
# Special data loader to load from multiple datasets
train_dataloader = MultiDatasetDataLoader(datasets=datasets,
batch_size_pairs=batch_size_pairs,
batch_size_triplets=batch_size_triplets,
dataset_size_temp=temp)
return train_dataloader, dataset_lengths_sum
#####
def construct_model(model_name, max_seq_length=512):
"""
This function constructs a SentenceTransformer model from a HuggingFace transformer model name
or from a local path to a transformer model repository.
"""
word_embedding_model = models.Transformer(model_name_or_path=model_name,
max_seq_length=max_seq_length,
tokenizer_name_or_path='bert-base-uncased',
trust_remote_code=True,
model_args={'torch_dtype': torch.bfloat16})
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
norm = models.Normalize()
model = SentenceTransformer(modules=[word_embedding_model, pooling_model, norm], device='cuda')
model[0].tokenizer.model_max_length = max_seq_length
return model
#####
# Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
# /print debug information to stdout
#####
# Set Hyperparameters
model_name = 'mosaic-bert-base-seqlen-2048'
# model_name = 'hum-lodestone-v1'
batch_size = 16
batch_size_pairs = batch_size_triplets = batch_size
max_seq_length = 2048
use_amp = False
num_cycles = 2
num_chunks = 50
num_epochs = 2
steps_per_epoch = 10000
# Total training steps = num_cycles * num_chunks * num_epochs * steps_per_epoch = 2 * 50 * 2 * 10,000 = 2,000,000 steps
warmup_steps = 500
testing = False
temp = -1
#####
output_path = 'hum-lodestone-v1'
logging.info("Output: "+output_path)
# Instantiate SentenceTransformer Model
model = construct_model(model_name=model_name, max_seq_length=max_seq_length)
# Load File Names and Record Volumes
with open('data_records.json') as fIn:
data_records = json.load(fIn)
total_pairs = sum(data_records.values())
logging.info("Total Training Pairs: {}".format(total_pairs))
# Initialize Data Generators
generators = build_generators(data_records=data_records,
max_seq_length=max_seq_length,
testing=testing)
logging.info("Data Generators Initialized")
# Define Training Loss Function
train_loss = losses.MultipleNegativesRankingLoss(model,
scale=20,
similarity_fct=util.dot_score)
logging.info(print_gpu_utilization())
#####
# Configure Training Cycles
failed_on = None # chunk that the process failed on
random.seed(42)
steps = 0
first_iter = True
for cycle_num in range(num_cycles):
logging.info("Starting Cycle {}".format(cycle_num+1))
for chunk_num in range(num_chunks):
if failed_on is not None and (chunk_num+1) < failed_on and (cycle_num+1) == 1:
pass
else:
logging.info("Chunk {}/{}".format(chunk_num+1, num_chunks))
logging.info("Loading {} Datasets".format(len([file for file in list(data_records.keys()) if file.startswith('S2ORC') or file.startswith('reddit_')]) if testing else len(data_records)))
# t_dataload0 = time.time()
# Create the training dataloader for the given chunk of data
train_dataloader, dataset_lengths_sum = produce_data(data_records,
num_chunks,
generators,
batch_size,
failed_on=failed_on,
first_iter=first_iter,
testing=testing,
temp=temp)
first_iter = False
# t_dataload1 = time.time()
# print(t_dataload1-t_dataload0)
logging.info(print_gpu_utilization())
# steps_per_epoch = dataset_lengths_sum // batch_size_pairs
for epoch_num in range(num_epochs):
logging.info("Performing Cycle {}, Chunk {}, Epoch {}".format(cycle_num+1, chunk_num+1, epoch_num+1))
try:
# t_fit0 = time.time()
# Train the model
model.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=None,
epochs=1,
warmup_steps=warmup_steps,
steps_per_epoch=steps_per_epoch,
use_amp=use_amp,
output_path=output_path)
# t_fit1 = time.time()
# print(t_fit1-t_fit0)
steps += steps_per_epoch
logging.info(print_gpu_utilization())
logging.info("Succeeded on Cycle {}, Chunk {}, Epoch {}".format(cycle_num+1, chunk_num+1, epoch_num+1))
logging.info("{} Steps Completed in Total".format(steps))
with open('train_logs.txt', 'a') as log:
log.write("Succeeded on Cycle {}, Chunk {}, Epoch {}: {} Steps Completed in Total\n".format(cycle_num+1, chunk_num+1, epoch_num+1, steps))
except:
logging.info("Failed on Cycle {}, Chunk {}, Epoch {}".format(cycle_num+1, chunk_num+1, epoch_num+1))
with open('train_logs.txt', 'a') as log:
log.write("Failed on Cycle {}, Chunk {}, Epoch {}: {} Steps Completed in Total\n".format(cycle_num+1, chunk_num+1, epoch_num+1, steps))
finally:
warmup_steps = 0
# Clear GPU/CUDA memory cache between data chunks
train_dataloader = None
model = None
train_loss = None
gc.collect()
torch.cuda.empty_cache()
# Reload the model and reinitialize the loss function
model = construct_model(model_name='hum-lodestone-v1', max_seq_length=max_seq_length)
train_loss = losses.MultipleNegativesRankingLoss(model,
scale=20,
similarity_fct=util.dot_score)
logging.info(print_gpu_utilization()) |