File size: 36,707 Bytes
940d605 27fdc8e 940d605 27fdc8e 940d605 3e2d1c7 940d605 3e2d1c7 940d605 3e2d1c7 940d605 3e2d1c7 940d605 3e2d1c7 940d605 263ef5a 940d605 263ef5a 940d605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 |
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter, Sequential, ModuleList, Linear
from rdkit import Chem
from rdkit.Chem import AllChem
from transformers import PretrainedConfig
from transformers import PreTrainedModel
from transformers import AutoModel
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_geometric.utils import remove_self_loops, add_self_loops, sort_edge_index
from torch_scatter import scatter
from torch_geometric.nn import global_add_pool, radius
from torch_sparse import SparseTensor
# from mxm_model.configuration_mxm import MXMConfig
from tqdm import tqdm
import numpy as np
import pandas as pd
from typing import List
import math
import inspect
from operator import itemgetter
from collections import OrderedDict
from math import sqrt, pi as PI
from scipy.optimize import brentq
from scipy import special as sp
try:
import sympy as sym
except ImportError:
sym = None
class SmilesDataset(torch.utils.data.Dataset):
def __init__(self, smiles):
self.smiles_list = smiles
self.data_list = []
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
return self.data_list[idx]
def get_data(self, smiles):
self.smiles_list = smiles
# self.data_list = []
# bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}
types = {'H': 0, 'C': 1, 'N': 2, 'O': 3, 'S': 4}
for i in range(len(self.smiles_list)):
# 将 SMILES 表示转换为 RDKit 的分子对象
# print(self.smiles_list[i])
mol = Chem.MolFromSmiles(self.smiles_list[i]) # 从smiles编码中获取结构信息
if mol is None:
print("无法创建Mol对象", self.smiles_list[i])
else:
mol3d = Chem.AddHs(
mol) # 在rdkit中,分子在默认情况下是不显示氢的,但氢原子对于真实的几何构象计算有很大的影响,所以在计算3D构象前,需要使用Chem.AddHs()方法加上氢原子
if mol3d is None:
print("无法创建mol3d对象", self.smiles_list[i])
else:
AllChem.EmbedMolecule(mol3d, randomSeed=1) # 生成3D构象
N = mol3d.GetNumAtoms()
# 获取原子坐标信息
if mol3d.GetNumConformers() > 0:
conformer = mol3d.GetConformer()
pos = conformer.GetPositions()
pos = torch.tensor(pos, dtype=torch.float)
type_idx = []
# atomic_number = []
# aromatic = []
# sp = []
# sp2 = []
# sp3 = []
for atom in mol3d.GetAtoms():
type_idx.append(types[atom.GetSymbol()])
# atomic_number.append(atom.GetAtomicNum())
# aromatic.append(1 if atom.GetIsAromatic() else 0)
# hybridization = atom.GetHybridization()
# sp.append(1 if hybridization == HybridizationType.SP else 0)
# sp2.append(1 if hybridization == HybridizationType.SP2 else 0)
# sp3.append(1 if hybridization == HybridizationType.SP3 else 0)
# z = torch.tensor(atomic_number, dtype=torch.long)
row, col, edge_type = [], [], []
for bond in mol3d.GetBonds():
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
row += [start, end]
col += [end, start]
# edge_type += 2 * [bonds[bond.GetBondType()]]
edge_index = torch.tensor([row, col], dtype=torch.long)
# edge_type = torch.tensor(edge_type, dtype=torch.long)
# edge_attr = F.one_hot(edge_type, num_classes=len(bonds)).to(torch.float)
perm = (edge_index[0] * N + edge_index[1]).argsort()
edge_index = edge_index[:, perm]
# edge_type = edge_type[perm]
# edge_attr = edge_attr[perm]
#
# row, col = edge_index
# hs = (z == 1).to(torch.float)
x = torch.tensor(type_idx).to(torch.float)
# y = self.y_list[i]
data = Data(x=x, pos=pos, edge_index=edge_index, smiles=self.smiles_list[i])
self.data_list.append(data)
else:
print("无法创建comfor", self.smiles_list[i])
return self.data_list
class EMA:
def __init__(self, model, decay):
self.decay = decay
self.shadow = {}
self.original = {}
# Register model parameters
for name, param in model.named_parameters():
if param.requires_grad:
self.shadow[name] = param.data.clone()
def __call__(self, model, num_updates=99999):
decay = min(self.decay, (1.0 + num_updates) / (10.0 + num_updates))
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
new_average = \
(1.0 - decay) * param.data + decay * self.shadow[name]
self.shadow[name] = new_average.clone()
def assign(self, model):
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
self.original[name] = param.data.clone()
param.data = self.shadow[name]
def resume(self, model):
for name, param in model.named_parameters():
if param.requires_grad:
assert name in self.shadow
param.data = self.original[name]
def MLP(channels):
return Sequential(*[
Sequential(Linear(channels[i - 1], channels[i]), SiLU())
for i in range(1, len(channels))])
class Res(nn.Module):
def __init__(self, dim):
super(Res, self).__init__()
self.mlp = MLP([dim, dim, dim])
def forward(self, m):
m1 = self.mlp(m)
m_out = m1 + m
return m_out
def compute_idx(pos, edge_index):
pos_i = pos[edge_index[0]]
pos_j = pos[edge_index[1]]
d_ij = torch.norm(abs(pos_j - pos_i), dim=-1, keepdim=False).unsqueeze(-1) + 1e-5
v_ji = (pos_i - pos_j) / d_ij
unique, counts = torch.unique(edge_index[0], sorted=True, return_counts=True) #Get central values
full_index = torch.arange(0, edge_index[0].size()[0]).cuda().int() #init full index
#print('full_index', full_index)
#Compute 1
repeat = torch.repeat_interleave(counts, counts)
counts_repeat1 = torch.repeat_interleave(full_index, repeat) #0,...,0,1,...,1,...
#Compute 2
split = torch.split(full_index, counts.tolist()) #split full index
index2 = list(edge_index[0].data.cpu().numpy()) #get repeat index
counts_repeat2 = torch.cat(itemgetter(*index2)(split), dim=0) #0,1,2,...,0,1,2,..
#Compute angle embeddings
v1 = v_ji[counts_repeat1.long()]
v2 = v_ji[counts_repeat2.long()]
angle = (v1*v2).sum(-1).unsqueeze(-1)
angle = torch.clamp(angle, min=-1.0, max=1.0) + 1e-6 + 1.0
return counts_repeat1.long(), counts_repeat2.long(), angle
def Jn(r, n):
return np.sqrt(np.pi / (2 * r)) * sp.jv(n + 0.5, r)
def Jn_zeros(n, k):
zerosj = np.zeros((n, k), dtype='float32')
zerosj[0] = np.arange(1, k + 1) * np.pi
points = np.arange(1, k + n) * np.pi
racines = np.zeros(k + n - 1, dtype='float32')
for i in range(1, n):
for j in range(k + n - 1 - i):
foo = brentq(Jn, points[j], points[j + 1], (i, ))
racines[j] = foo
points = racines
zerosj[i][:k] = racines[:k]
return zerosj
def spherical_bessel_formulas(n):
x = sym.symbols('x')
f = [sym.sin(x) / x]
a = sym.sin(x) / x
for i in range(1, n):
b = sym.diff(a, x) / x
f += [sym.simplify(b * (-x)**i)]
a = sym.simplify(b)
return f
def bessel_basis(n, k):
zeros = Jn_zeros(n, k)
normalizer = []
for order in range(n):
normalizer_tmp = []
for i in range(k):
normalizer_tmp += [0.5 * Jn(zeros[order, i], order + 1)**2]
normalizer_tmp = 1 / np.array(normalizer_tmp)**0.5
normalizer += [normalizer_tmp]
f = spherical_bessel_formulas(n)
x = sym.symbols('x')
bess_basis = []
for order in range(n):
bess_basis_tmp = []
for i in range(k):
bess_basis_tmp += [
sym.simplify(normalizer[order][i] *
f[order].subs(x, zeros[order, i] * x))
]
bess_basis += [bess_basis_tmp]
return bess_basis
def sph_harm_prefactor(k, m):
return ((2 * k + 1) * np.math.factorial(k - abs(m)) /
(4 * np.pi * np.math.factorial(k + abs(m))))**0.5
def associated_legendre_polynomials(k, zero_m_only=True):
z = sym.symbols('z')
P_l_m = [[0] * (j + 1) for j in range(k)]
P_l_m[0][0] = 1
if k > 0:
P_l_m[1][0] = z
for j in range(2, k):
P_l_m[j][0] = sym.simplify(((2 * j - 1) * z * P_l_m[j - 1][0] -
(j - 1) * P_l_m[j - 2][0]) / j)
if not zero_m_only:
for i in range(1, k):
P_l_m[i][i] = sym.simplify((1 - 2 * i) * P_l_m[i - 1][i - 1])
if i + 1 < k:
P_l_m[i + 1][i] = sym.simplify(
(2 * i + 1) * z * P_l_m[i][i])
for j in range(i + 2, k):
P_l_m[j][i] = sym.simplify(
((2 * j - 1) * z * P_l_m[j - 1][i] -
(i + j - 1) * P_l_m[j - 2][i]) / (j - i))
return P_l_m
def real_sph_harm(k, zero_m_only=True, spherical_coordinates=True):
if not zero_m_only:
S_m = [0]
C_m = [1]
for i in range(1, k):
x = sym.symbols('x')
y = sym.symbols('y')
S_m += [x * S_m[i - 1] + y * C_m[i - 1]]
C_m += [x * C_m[i - 1] - y * S_m[i - 1]]
P_l_m = associated_legendre_polynomials(k, zero_m_only)
if spherical_coordinates:
theta = sym.symbols('theta')
z = sym.symbols('z')
for i in range(len(P_l_m)):
for j in range(len(P_l_m[i])):
if type(P_l_m[i][j]) != int:
P_l_m[i][j] = P_l_m[i][j].subs(z, sym.cos(theta))
if not zero_m_only:
phi = sym.symbols('phi')
for i in range(len(S_m)):
S_m[i] = S_m[i].subs(x,
sym.sin(theta) * sym.cos(phi)).subs(
y,
sym.sin(theta) * sym.sin(phi))
for i in range(len(C_m)):
C_m[i] = C_m[i].subs(x,
sym.sin(theta) * sym.cos(phi)).subs(
y,
sym.sin(theta) * sym.sin(phi))
Y_func_l_m = [['0'] * (2 * j + 1) for j in range(k)]
for i in range(k):
Y_func_l_m[i][0] = sym.simplify(sph_harm_prefactor(i, 0) * P_l_m[i][0])
if not zero_m_only:
for i in range(1, k):
for j in range(1, i + 1):
Y_func_l_m[i][j] = sym.simplify(
2**0.5 * sph_harm_prefactor(i, j) * C_m[j] * P_l_m[i][j])
for i in range(1, k):
for j in range(1, i + 1):
Y_func_l_m[i][-j] = sym.simplify(
2**0.5 * sph_harm_prefactor(i, -j) * S_m[j] * P_l_m[i][j])
return Y_func_l_m
class BesselBasisLayer(torch.nn.Module):
def __init__(self, num_radial, cutoff, envelope_exponent=6):
super(BesselBasisLayer, self).__init__()
self.cutoff = cutoff
self.envelope = Envelope(envelope_exponent)
self.freq = torch.nn.Parameter(torch.Tensor(num_radial))
self.reset_parameters()
def reset_parameters(self):
# 代替in-place操作
# torch.arange(1, self.freq.numel() + 1, out=self.freq).mul_(PI)
# self.freq = torch.arange(1, self.freq.numel() + 1, out=self.freq).mul_(PI)
# 计算临时张量并存储到 tmp_tensor 变量中
tmp_tensor = torch.arange(1, self.freq.numel() + 1, dtype=self.freq.dtype, device=self.freq.device)
# 使用乘法函数实现数乘并将结果保存到 self.freq 张量上
self.freq.data = torch.mul(tmp_tensor, PI)
def forward(self, dist):
dist = dist.unsqueeze(-1) / self.cutoff
return self.envelope(dist) * (self.freq * dist).sin()
class SiLU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
return silu(input)
def silu(input):
return input * torch.sigmoid(input)
class Envelope(torch.nn.Module):
def __init__(self, exponent):
super(Envelope, self).__init__()
self.p = exponent
self.a = -(self.p + 1) * (self.p + 2) / 2
self.b = self.p * (self.p + 2)
self.c = -self.p * (self.p + 1) / 2
def forward(self, x):
p, a, b, c = self.p, self.a, self.b, self.c
x_pow_p0 = x.pow(p)
x_pow_p1 = x_pow_p0 * x
env_val = 1. / x + a * x_pow_p0 + b * x_pow_p1 + c * x_pow_p1 * x
zero = torch.zeros_like(x)
return torch.where(x < 1, env_val, zero)
class SphericalBasisLayer(torch.nn.Module):
def __init__(self, num_spherical, num_radial, cutoff=5.0,
envelope_exponent=5):
super(SphericalBasisLayer, self).__init__()
assert num_radial <= 64
self.num_spherical = num_spherical
self.num_radial = num_radial
self.cutoff = cutoff
self.envelope = Envelope(envelope_exponent)
bessel_forms = bessel_basis(num_spherical, num_radial)
sph_harm_forms = real_sph_harm(num_spherical)
self.sph_funcs = []
self.bessel_funcs = []
x, theta = sym.symbols('x theta')
modules = {'sin': torch.sin, 'cos': torch.cos}
for i in range(num_spherical):
if i == 0:
sph1 = sym.lambdify([theta], sph_harm_forms[i][0], modules)(0)
self.sph_funcs.append(lambda x: torch.zeros_like(x) + sph1)
else:
sph = sym.lambdify([theta], sph_harm_forms[i][0], modules)
self.sph_funcs.append(sph)
for j in range(num_radial):
bessel = sym.lambdify([x], bessel_forms[i][j], modules)
self.bessel_funcs.append(bessel)
def forward(self, dist, angle, idx_kj):
dist = dist / self.cutoff
rbf = torch.stack([f(dist) for f in self.bessel_funcs], dim=1)
rbf = self.envelope(dist).unsqueeze(-1) * rbf
cbf = torch.stack([f(angle) for f in self.sph_funcs], dim=1)
n, k = self.num_spherical, self.num_radial
out = (rbf[idx_kj].view(-1, n, k) * cbf.view(-1, n, 1)).view(-1, n * k)
return out
msg_special_args = set([
'edge_index',
'edge_index_i',
'edge_index_j',
'size',
'size_i',
'size_j',
])
aggr_special_args = set([
'index',
'dim_size',
])
update_special_args = set([])
class MessagePassing(torch.nn.Module):
r"""Base class for creating message passing layers
.. math::
\mathbf{x}_i^{\prime} = \gamma_{\mathbf{\Theta}} \left( \mathbf{x}_i,
\square_{j \in \mathcal{N}(i)} \, \phi_{\mathbf{\Theta}}
\left(\mathbf{x}_i, \mathbf{x}_j,\mathbf{e}_{i,j}\right) \right),
where :math:`\square` denotes a differentiable, permutation invariant
function, *e.g.*, sum, mean or max, and :math:`\gamma_{\mathbf{\Theta}}`
and :math:`\phi_{\mathbf{\Theta}}` denote differentiable functions such as
MLPs.
See `here <https://pytorch-geometric.readthedocs.io/en/latest/notes/
create_gnn.html>`__ for the accompanying tutorial.
Args:
aggr (string, optional): The aggregation scheme to use
(:obj:`"add"`, :obj:`"mean"` or :obj:`"max"`).
(default: :obj:`"add"`)
flow (string, optional): The flow direction of message passing
(:obj:`"source_to_target"` or :obj:`"target_to_source"`).
(default: :obj:`"source_to_target"`)
node_dim (int, optional): The axis along which to propagate.
(default: :obj:`0`)
"""
def __init__(self, aggr='add', flow='target_to_source', node_dim=0):
super(MessagePassing, self).__init__()
self.aggr = aggr
assert self.aggr in ['add', 'mean', 'max']
self.flow = flow
assert self.flow in ['source_to_target', 'target_to_source']
self.node_dim = node_dim
assert self.node_dim >= 0
self.__msg_params__ = inspect.signature(self.message).parameters
self.__msg_params__ = OrderedDict(self.__msg_params__)
self.__aggr_params__ = inspect.signature(self.aggregate).parameters
self.__aggr_params__ = OrderedDict(self.__aggr_params__)
self.__aggr_params__.popitem(last=False)
self.__update_params__ = inspect.signature(self.update).parameters
self.__update_params__ = OrderedDict(self.__update_params__)
self.__update_params__.popitem(last=False)
msg_args = set(self.__msg_params__.keys()) - msg_special_args
aggr_args = set(self.__aggr_params__.keys()) - aggr_special_args
update_args = set(self.__update_params__.keys()) - update_special_args
self.__args__ = set().union(msg_args, aggr_args, update_args)
def __set_size__(self, size, index, tensor):
if not torch.is_tensor(tensor):
pass
elif size[index] is None:
size[index] = tensor.size(self.node_dim)
elif size[index] != tensor.size(self.node_dim):
raise ValueError(
(f'Encountered node tensor with size '
f'{tensor.size(self.node_dim)} in dimension {self.node_dim}, '
f'but expected size {size[index]}.'))
def __collect__(self, edge_index, size, kwargs):
i, j = (0, 1) if self.flow == "target_to_source" else (1, 0)
ij = {"_i": i, "_j": j}
out = {}
for arg in self.__args__:
if arg[-2:] not in ij.keys():
out[arg] = kwargs.get(arg, inspect.Parameter.empty)
else:
idx = ij[arg[-2:]]
data = kwargs.get(arg[:-2], inspect.Parameter.empty)
if data is inspect.Parameter.empty:
out[arg] = data
continue
if isinstance(data, tuple) or isinstance(data, list):
assert len(data) == 2
self.__set_size__(size, 1 - idx, data[1 - idx])
data = data[idx]
if not torch.is_tensor(data):
out[arg] = data
continue
self.__set_size__(size, idx, data)
out[arg] = data.index_select(self.node_dim, edge_index[idx])
size[0] = size[1] if size[0] is None else size[0]
size[1] = size[0] if size[1] is None else size[1]
# Add special message arguments.
out['edge_index'] = edge_index
out['edge_index_i'] = edge_index[i]
out['edge_index_j'] = edge_index[j]
out['size'] = size
out['size_i'] = size[i]
out['size_j'] = size[j]
# Add special aggregate arguments.
out['index'] = out['edge_index_i']
out['dim_size'] = out['size_i']
return out
def __distribute__(self, params, kwargs):
out = {}
for key, param in params.items():
data = kwargs[key]
if data is inspect.Parameter.empty:
if param.default is inspect.Parameter.empty:
raise TypeError(f'Required parameter {key} is empty.')
data = param.default
out[key] = data
return out
def propagate(self, edge_index, size=None, **kwargs):
r"""The initial call to start propagating messages.
Args:
edge_index (Tensor): The indices of a general (sparse) assignment
matrix with shape :obj:`[N, M]` (can be directed or
undirected).
size (list or tuple, optional): The size :obj:`[N, M]` of the
assignment matrix. If set to :obj:`None`, the size will be
automatically inferred and assumed to be quadratic.
(default: :obj:`None`)
**kwargs: Any additional data which is needed to construct and
aggregate messages, and to update node embeddings.
"""
size = [None, None] if size is None else size
size = [size, size] if isinstance(size, int) else size
size = size.tolist() if torch.is_tensor(size) else size
size = list(size) if isinstance(size, tuple) else size
assert isinstance(size, list)
assert len(size) == 2
kwargs = self.__collect__(edge_index, size, kwargs)
msg_kwargs = self.__distribute__(self.__msg_params__, kwargs)
m = self.message(**msg_kwargs)
aggr_kwargs = self.__distribute__(self.__aggr_params__, kwargs)
m = self.aggregate(m, **aggr_kwargs)
update_kwargs = self.__distribute__(self.__update_params__, kwargs)
m = self.update(m, **update_kwargs)
return m
def message(self, x_j): # pragma: no cover
r"""Constructs messages to node :math:`i` in analogy to
:math:`\phi_{\mathbf{\Theta}}` for each edge in
:math:`(j,i) \in \mathcal{E}` if :obj:`flow="source_to_target"` and
:math:`(i,j) \in \mathcal{E}` if :obj:`flow="target_to_source"`.
Can take any argument which was initially passed to :meth:`propagate`.
In addition, tensors passed to :meth:`propagate` can be mapped to the
respective nodes :math:`i` and :math:`j` by appending :obj:`_i` or
:obj:`_j` to the variable name, *.e.g.* :obj:`x_i` and :obj:`x_j`.
"""
return x_j
def aggregate(self, inputs, index, dim_size): # pragma: no cover
r"""Aggregates messages from neighbors as
:math:`\square_{j \in \mathcal{N}(i)}`.
By default, delegates call to scatter functions that support
"add", "mean" and "max" operations specified in :meth:`__init__` by
the :obj:`aggr` argument.
"""
return scatter(inputs, index, dim=self.node_dim, dim_size=dim_size, reduce=self.aggr)
def update(self, inputs): # pragma: no cover
r"""Updates node embeddings in analogy to
:math:`\gamma_{\mathbf{\Theta}}` for each node
:math:`i \in \mathcal{V}`.
Takes in the output of aggregation as first argument and any argument
which was initially passed to :meth:`propagate`.
"""
return inputs
class MXMNet(nn.Module):
def __init__(self, dim=128, n_layer=6, cutoff=5.0, num_spherical=7, num_radial=6, envelope_exponent=5):
super(MXMNet, self).__init__()
self.dim = dim
self.n_layer = n_layer
self.cutoff = cutoff
self.embeddings = nn.Parameter(torch.ones((5, self.dim)))
self.rbf_l = BesselBasisLayer(16, 5, envelope_exponent)
self.rbf_g = BesselBasisLayer(16, self.cutoff, envelope_exponent)
self.sbf = SphericalBasisLayer(num_spherical, num_radial, 5, envelope_exponent)
self.rbf_g_mlp = MLP([16, self.dim])
self.rbf_l_mlp = MLP([16, self.dim])
self.sbf_1_mlp = MLP([num_spherical * num_radial, self.dim])
self.sbf_2_mlp = MLP([num_spherical * num_radial, self.dim])
self.global_layers = torch.nn.ModuleList()
for layer in range(self.n_layer):
self.global_layers.append(Global_MP(self.dim))
self.local_layers = torch.nn.ModuleList()
for layer in range(self.n_layer):
self.local_layers.append(Local_MP(self.dim))
self.init()
def init(self):
stdv = math.sqrt(3)
self.embeddings.data.uniform_(-stdv, stdv)
def indices(self, edge_index, num_nodes):
row, col = edge_index
value = torch.arange(row.size(0), device=row.device)
adj_t = SparseTensor(row=col, col=row, value=value,
sparse_sizes=(num_nodes, num_nodes))
#Compute the node indices for two-hop angles
adj_t_row = adj_t[row]
num_triplets = adj_t_row.set_value(None).sum(dim=1).to(torch.long)
idx_i = col.repeat_interleave(num_triplets)
idx_j = row.repeat_interleave(num_triplets)
idx_k = adj_t_row.storage.col()
mask = idx_i != idx_k
idx_i_1, idx_j, idx_k = idx_i[mask], idx_j[mask], idx_k[mask]
idx_kj = adj_t_row.storage.value()[mask]
idx_ji_1 = adj_t_row.storage.row()[mask]
#Compute the node indices for one-hop angles
adj_t_col = adj_t[col]
num_pairs = adj_t_col.set_value(None).sum(dim=1).to(torch.long)
idx_i_2 = row.repeat_interleave(num_pairs)
idx_j1 = col.repeat_interleave(num_pairs)
idx_j2 = adj_t_col.storage.col()
idx_ji_2 = adj_t_col.storage.row()
idx_jj = adj_t_col.storage.value()
return idx_i_1, idx_j, idx_k, idx_kj, idx_ji_1, idx_i_2, idx_j1, idx_j2, idx_jj, idx_ji_2
def forward_features(self, data):
x = data.x
edge_index = data.edge_index
pos = data.pos
batch = data.batch
# Initialize node embeddings
h = torch.index_select(self.embeddings, 0, x.long())
'''局部层--------------------------------------------------------------------------
'''
# Get the edges and pairwise distances in the local layer
edge_index_l, _ = remove_self_loops(edge_index) # 移除自环后的边索引
j_l, i_l = edge_index_l
dist_l = (pos[i_l] - pos[j_l]).pow(2).sum(dim=-1).sqrt() # 两个节点之间的距离
'''全局层--------------------------------------------------------------------------
'''
# Get the edges pairwise distances in the global layer
# radius函数返回两个节点之间的距离小于cutoff的边索引
row, col = radius(pos, pos, self.cutoff, batch, batch, max_num_neighbors=500)
edge_index_g = torch.stack([row, col], dim=0)
edge_index_g, _ = remove_self_loops(edge_index_g)
j_g, i_g = edge_index_g
dist_g = (pos[i_g] - pos[j_g]).pow(2).sum(dim=-1).sqrt()
# Compute the node indices for defining the angles
idx_i_1, idx_j, idx_k, idx_kj, idx_ji, idx_i_2, idx_j1, idx_j2, idx_jj, idx_ji_2 = self.indices(edge_index_l, num_nodes=h.size(0))
# Compute the two-hop angles
pos_ji_1, pos_kj = pos[idx_j] - pos[idx_i_1], pos[idx_k] - pos[idx_j]
a = (pos_ji_1 * pos_kj).sum(dim=-1)
b = torch.cross(pos_ji_1, pos_kj).norm(dim=-1)
angle_1 = torch.atan2(b, a)
# Compute the one-hop angles
pos_ji_2, pos_jj = pos[idx_j1] - pos[idx_i_2], pos[idx_j2] - pos[idx_j1]
a = (pos_ji_2 * pos_jj).sum(dim=-1)
b = torch.cross(pos_ji_2, pos_jj).norm(dim=-1)
angle_2 = torch.atan2(b, a)
# Get the RBF and SBF embeddings
rbf_g = self.rbf_g(dist_g)
rbf_l = self.rbf_l(dist_l)
sbf_1 = self.sbf(dist_l, angle_1, idx_kj)
sbf_2 = self.sbf(dist_l, angle_2, idx_jj)
rbf_g = self.rbf_g_mlp(rbf_g)
rbf_l = self.rbf_l_mlp(rbf_l)
sbf_1 = self.sbf_1_mlp(sbf_1)
sbf_2 = self.sbf_2_mlp(sbf_2)
# Perform the message passing schemes
node_sum = 0
for layer in range(self.n_layer):
h = self.global_layers[layer](h, rbf_g, edge_index_g)
h, t = self.local_layers[layer](h, rbf_l, sbf_1, sbf_2, idx_kj, idx_ji, idx_jj, idx_ji_2, edge_index_l)
node_sum += t
# Readout
output = global_add_pool(node_sum, batch)
return output.view(-1)
def loss(self, pred, label):
pred, label = pred.reshape(-1), label.reshape(-1)
return F.mse_loss(pred, label)
class Global_MP(MessagePassing):
def __init__(self, dim):
super(Global_MP, self).__init__()
self.dim = dim
self.h_mlp = MLP([self.dim, self.dim])
self.res1 = Res(self.dim)
self.res2 = Res(self.dim)
self.res3 = Res(self.dim)
self.mlp = MLP([self.dim, self.dim])
self.x_edge_mlp = MLP([self.dim * 3, self.dim])
self.linear = nn.Linear(self.dim, self.dim, bias=False)
def forward(self, h, edge_attr, edge_index):
edge_index, _ = add_self_loops(edge_index, num_nodes=h.size(0))
res_h = h
# Integrate the Cross Layer Mapping inside the Global Message Passing
h = self.h_mlp(h)
# Message Passing operation
h = self.propagate(edge_index, x=h, num_nodes=h.size(0), edge_attr=edge_attr)
# Update function f_u
h = self.res1(h)
h = self.mlp(h) + res_h
h = self.res2(h)
h = self.res3(h)
# Message Passing operation
h = self.propagate(edge_index, x=h, num_nodes=h.size(0), edge_attr=edge_attr)
return h
def message(self, x_i, x_j, edge_attr, edge_index, num_nodes):
num_edge = edge_attr.size()[0]
x_edge = torch.cat((x_i[:num_edge], x_j[:num_edge], edge_attr), -1)
x_edge = self.x_edge_mlp(x_edge)
x_j = torch.cat((self.linear(edge_attr) * x_edge, x_j[num_edge:]), dim=0)
return x_j
def update(self, aggr_out):
return aggr_out
class Local_MP(torch.nn.Module):
def __init__(self, dim):
super(Local_MP, self).__init__()
self.dim = dim
self.h_mlp = MLP([self.dim, self.dim])
self.mlp_kj = MLP([3 * self.dim, self.dim])
self.mlp_ji_1 = MLP([3 * self.dim, self.dim])
self.mlp_ji_2 = MLP([self.dim, self.dim])
self.mlp_jj = MLP([self.dim, self.dim])
self.mlp_sbf1 = MLP([self.dim, self.dim, self.dim])
self.mlp_sbf2 = MLP([self.dim, self.dim, self.dim])
self.lin_rbf1 = nn.Linear(self.dim, self.dim, bias=False)
self.lin_rbf2 = nn.Linear(self.dim, self.dim, bias=False)
self.res1 = Res(self.dim)
self.res2 = Res(self.dim)
self.res3 = Res(self.dim)
self.lin_rbf_out = nn.Linear(self.dim, self.dim, bias=False)
self.h_mlp = MLP([self.dim, self.dim])
self.y_mlp = MLP([self.dim, self.dim, self.dim, self.dim])
self.y_W = nn.Linear(self.dim, 1)
def forward(self, h, rbf, sbf1, sbf2, idx_kj, idx_ji_1, idx_jj, idx_ji_2, edge_index, num_nodes=None):
res_h = h
# Integrate the Cross Layer Mapping inside the Local Message Passing
h = self.h_mlp(h)
# Message Passing 1
j, i = edge_index
m = torch.cat([h[i], h[j], rbf], dim=-1)
m_kj = self.mlp_kj(m)
m_kj = m_kj * self.lin_rbf1(rbf)
m_kj = m_kj[idx_kj] * self.mlp_sbf1(sbf1)
m_kj = scatter(m_kj, idx_ji_1, dim=0, dim_size=m.size(0), reduce='add')
m_ji_1 = self.mlp_ji_1(m)
m = m_ji_1 + m_kj
# Message Passing 2 (index jj denotes j'i in the main paper)
m_jj = self.mlp_jj(m)
m_jj = m_jj * self.lin_rbf2(rbf)
m_jj = m_jj[idx_jj] * self.mlp_sbf2(sbf2)
m_jj = scatter(m_jj, idx_ji_2, dim=0, dim_size=m.size(0), reduce='add')
m_ji_2 = self.mlp_ji_2(m)
m = m_ji_2 + m_jj
# Aggregation
m = self.lin_rbf_out(rbf) * m
h = scatter(m, i, dim=0, dim_size=h.size(0), reduce='add')
# Update function f_u
h = self.res1(h)
h = self.h_mlp(h) + res_h
h = self.res2(h)
h = self.res3(h)
# Output Module
y = self.y_mlp(h)
y = self.y_W(y)
return h, y
class MXMConfig(PretrainedConfig):
model_type = "mxm"
def __init__(
self,
dim: int=128,
n_layer: int=6,
cutoff: float=5.0,
num_spherical: int=7,
num_radial: int=6,
envelope_exponent: int=5,
smiles: List[str] = None,
processor_class: str = "SmilesProcessor",
**kwargs,
):
self.dim = dim # the dimension of input feature
self.n_layer = n_layer # the number of GCN layers
self.cutoff = cutoff # the cutoff distance for neighbor searching
self.num_spherical = num_spherical # the number of spherical harmonics
self.num_radial = num_radial # the number of radial basis
self.envelope_exponent = envelope_exponent # the envelope exponent
self.smiles = smiles # process smiles
self.processor_class = processor_class
super().__init__(**kwargs)
class MXMModel(PreTrainedModel):
config_class = MXMConfig
def __init__(self, config):
super().__init__(config)
self.backbone = MXMNet(
dim=config.dim,
n_layer=config.n_layer,
cutoff=config.cutoff,
num_spherical=config.num_spherical,
num_radial=config.num_radial,
envelope_exponent=config.envelope_exponent,
)
self.process = SmilesDataset(
smiles=config.smiles,
)
self.model = None
self.dataset = None
self.output = None
self.data_loader = None
self.pred_data = None
def forward(self, tensor):
return self.backbone.forward_features(tensor)
def SmilesProcessor(self, smiles):
return self.process.get_data(smiles)
def predict_smiles(self, smiles, device: str='cpu', result_dir: str='./', **kwargs):
batch_size = kwargs.pop('batch_size', 1)
shuffle = kwargs.pop('shuffle', False)
drop_last = kwargs.pop('drop_last', False)
num_workers = kwargs.pop('num_workers', 0)
self.model = AutoModel.from_pretrained("Huhujingjing/custom-mxm", trust_remote_code=True).to(device)
self.model.eval()
self.dataset = self.process.get_data(smiles)
self.output = ""
self.output += ("predicted samples num: {}\n".format(len(self.dataset)))
self.output +=("predicted samples:{}\n".format(self.dataset[0]))
self.data_loader = DataLoader(self.dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last,
num_workers=num_workers
)
self.pred_data = {
'smiles': [],
'pred': []
}
for batch in tqdm(self.data_loader):
batch = batch.to(device)
with torch.no_grad():
self.pred_data['smiles'] += batch['smiles']
self.pred_data['pred'] += self.model(batch).cpu().tolist()
pred = torch.tensor(self.pred_data['pred']).reshape(-1)
if device == 'cuda':
pred = pred.cpu().tolist()
self.pred_data['pred'] = pred
pred_df = pd.DataFrame(self.pred_data)
pred_df['pred'] = pred_df['pred'].apply(lambda x: round(x, 2))
self.output +=('-' * 40 + '\n'+'predicted result: \n'+'{}\n'.format(pred_df))
self.output +=('-' * 40)
# pred_df.to_csv(os.path.join(result_dir, 'gcn.csv'), index=False)
# self.output +=('\nsave predicted result to {}\n'.format(os.path.join(result_dir, 'gcn.csv')))
return self.output, pred_df
if __name__ == "__main__":
# pass
mxm_config = MXMConfig(
dim=128,
n_layer=6,
cutoff=5.0,
num_spherical=7,
num_radial=6,
envelope_exponent=5,
smiles=["C", "CC", "CCC"],
processor_class="SmilesProcessor"
)
# mxm_config.save_pretrained("custom-mxm")
mxmd = MXMModel(mxm_config)
mxmd.model.load_state_dict(torch.load(r'G:\Trans_MXM\mxm_model\mxm.pt'))
mxmd.save_pretrained("custom-mxm")
|