Update README.md
Browse files
README.md
CHANGED
@@ -25,7 +25,10 @@ SmolLM2 is a family of compact language models available in three size: 135M, 36
|
|
25 |
SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 360M model was trained on 4 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
|
26 |
|
27 |
The instruct model additionally supports tasks such as text rewriting, summarization and function calling (for the 1.7B) thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1).
|
28 |
-
You can find the SFT dataset here: https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk and finetuning code
|
|
|
|
|
|
|
29 |
|
30 |
### How to use
|
31 |
|
|
|
25 |
SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 360M model was trained on 4 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
|
26 |
|
27 |
The instruct model additionally supports tasks such as text rewriting, summarization and function calling (for the 1.7B) thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1).
|
28 |
+
You can find the SFT dataset here: https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk and finetuning code in the [ali] https://github.com/huggingface/alignment-handbook/tree/main/recipes/smollm2
|
29 |
+
|
30 |
+
For more details refer to: https://github.com/huggingface/smollm. You will find pre-training, post-training, evaluation and local inference code.
|
31 |
+
|
32 |
|
33 |
### How to use
|
34 |
|