loubnabnl HF staff commited on
Commit
6a86007
1 Parent(s): 61ee8dc
README.md CHANGED
@@ -1,12 +1,22 @@
1
  ---
2
- library_name: transformers
3
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
4
  language:
5
  - en
6
  ---
7
 
8
 
9
- # SmolLM-Instruct
10
 
11
  <center>
12
  <img src="https://huggingface.co/datasets/HuggingFaceTB/images/resolve/main/banner_smol.png" alt="SmolLM" width="1100" height="600">
@@ -14,15 +24,29 @@ language:
14
 
15
 
16
  ## Model Summary
 
 
 
 
 
 
 
 
 
17
 
18
- SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters. These models are built on Cosmo-Corpus, a meticulously curated high-quality training dataset. Cosmo-Corpus includes Cosmopedia v2 (28B tokens of synthetic textbooks and stories generated by Mixtral), Python-Edu (4B tokens of educational Python samples from The Stack), and FineWeb-Edu (220B tokens of deduplicated educational web samples from FineWeb). For duther details, we refer to our blogpost TODO.
 
 
 
19
 
20
- To build SmolLM-Instruct, we instruction tuned the models using publicly available permissive instruction datasets. We trained all three models for one epoch on the permissive subset of the WebInstructSub dataset, combined with StarCoder2-Self-OSS-Instruct. Following this, we performed DPO (Direct Preference Optimization) for one epoch: using HelpSteer for the 135M and 1.7B models, and argilla/dpo-mix-7k for the 360M model. We followed the training parameters from the Zephyr-Gemma recipe in the alignment handbook, but adjusted the SFT (Supervised Fine-Tuning) learning rate to 3e-4.
21
- [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
22
 
23
- This is the SmolLM-360M-Instruct.
 
24
 
25
- ### Generation
 
 
26
  ```bash
27
  pip install transformers
28
  ```
@@ -37,17 +61,32 @@ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
37
  # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
38
  model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
39
 
40
- messages = [{"role": "user", "content": "List the steps to bake a chocolate cake from scratch."}]
41
  input_text=tokenizer.apply_chat_template(messages, tokenize=False)
42
  print(input_text)
43
  inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
44
- outputs = model.generate(inputs, max_new_tokens=100, temperature=0.6, top_p=0.92, do_sample=True)
45
  print(tokenizer.decode(outputs[0]))
46
  ```
47
 
48
- # Limitations
 
 
 
 
 
 
 
 
 
49
 
50
- While SmolLM models have been trained on a diverse dataset including educational content and synthetic texts, they have limitations. The models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content. For a more comprehensive discussion of the models' capabilities and limitations, please refer to our full blog post.
 
 
 
 
 
 
51
 
52
  # Citation
53
  ```bash
 
1
  ---
 
2
  license: apache-2.0
3
+ base_model: HuggingFaceTB/SmolLM-360M
4
+ tags:
5
+ - alignment-handbook
6
+ - trl
7
+ - sft
8
+ datasets:
9
+ - Magpie-Align/Magpie-Pro-300K-Filtered
10
+ - bigcode/self-oss-instruct-sc2-exec-filter-50k
11
+ - teknium/OpenHermes-2.5
12
+ - HuggingFaceTB/everyday-conversations-llama3.1-2k
13
+ library_name: transformers
14
  language:
15
  - en
16
  ---
17
 
18
 
19
+ # SmolLM-360M-Instruct
20
 
21
  <center>
22
  <img src="https://huggingface.co/datasets/HuggingFaceTB/images/resolve/main/banner_smol.png" alt="SmolLM" width="1100" height="600">
 
24
 
25
 
26
  ## Model Summary
27
+ Chat with the model at: https://huggingface.co/spaces/HuggingFaceTB/instant-smol
28
+
29
+ SmolLM is a series of language models available in three sizes: 135M, 360M, and 1.7B parameters.
30
+
31
+ These models are trained on [SmolLM-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus), a curated collection of high-quality educational and synthetic data designed for training LLMs. For further details, we refer to our [blogpost](https://huggingface.co/blog/smollm).
32
+
33
+ To build SmolLM-Instruct, we finetune the base models on publicly available datasets.
34
+
35
+ ## Changelog
36
 
37
+ |Release|Description|
38
+ |-|-|
39
+ |v0.1| Initial release of SmolLM-Instruct. We finetune on the permissive subset of the [WebInstructSub](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub) dataset, combined with [StarCoder2-Self-OSS-Instruct](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k). Then, we perform DPO (Direct Preference Optimization) for one epoch on [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) for the 135M and 1.7B models, and [argilla/dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k) for the 360M model.|
40
+ |v0.2| We changed the finetuning mix to datasets more suitable for smol models. We train on a new dataset of 2k simple everyday conversations we generated by llama3.1-70B [everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k/), [Magpie-Pro-300K-Filtere](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered), [StarCoder2-Self-OSS-Instruct](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k), and a small subset of [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5)|
41
 
42
+ ## Usage
 
43
 
44
+ ### Local Applications
45
+ ⚡ For local applications, you can find optimized implementations of the model in MLC, GGUF and Transformers.js formats, in addition to fast in-browser demos in this collection: https://huggingface.co/collections/HuggingFaceTB/local-smollms-66c0f3b2a15b4eed7fb198d0
46
 
47
+ We noticed that 4bit quantization degrades the quality of the 135M and 360M, so we use `q016` for MLC and ONNX/Transformers.js checkpoints for the WebGPU demos. We also suggest using temperature 0.2 and top-p 0.9.
48
+
49
+ ### Transformers
50
  ```bash
51
  pip install transformers
52
  ```
 
61
  # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
62
  model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
63
 
64
+ messages = [{"role": "user", "content": "What is the capital of France."}]
65
  input_text=tokenizer.apply_chat_template(messages, tokenize=False)
66
  print(input_text)
67
  inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
68
+ outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
69
  print(tokenizer.decode(outputs[0]))
70
  ```
71
 
72
+ ### Chat in TRL
73
+ You can also use the TRL CLI to chat with the model from the terminal:
74
+ ```bash
75
+ pip install trl
76
+ trl chat --model_name_or_path HuggingFaceTB/SmolLM-360M-Instruct --device cpu
77
+ ```
78
+
79
+ ## Limitations
80
+
81
+ Additionally, the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data, we invite users to leverage them as assistive tools rather than definitive sources of information. We find that they can handle general knowledge questions, creative writing and basic Python programming. But they are English only and may have difficulty with arithmetics, editing tasks and complex reasoning. For more details about the models' capabilities, please refer to our [blog post](https://huggingface.co/blog/smollm).
82
 
83
+ ## Training parameters
84
+ We train the models using the [alignement-handbook](https://github.com/huggingface/alignment-handbook) with the datasets mentioned in the changelog, using these parameters for v0.2:
85
+ - 1 epoch
86
+ - lr 1e-3
87
+ - cosine schedule
88
+ - warmup ratio 0.1
89
+ - global batch size 262k tokens
90
 
91
  # Citation
92
  ```bash
all_results.json DELETED
@@ -1,22 +0,0 @@
1
- {
2
- "epoch": 0.985781990521327,
3
- "eval_logits/chosen": -0.5211005210876465,
4
- "eval_logits/rejected": -0.7105662226676941,
5
- "eval_logps/chosen": -442.4708557128906,
6
- "eval_logps/rejected": -418.5675354003906,
7
- "eval_loss": 0.6833909749984741,
8
- "eval_rewards/accuracies": 0.59375,
9
- "eval_rewards/chosen": -0.008601006120443344,
10
- "eval_rewards/margins": 0.021825773641467094,
11
- "eval_rewards/rejected": -0.03042677976191044,
12
- "eval_runtime": 8.5409,
13
- "eval_samples": 750,
14
- "eval_samples_per_second": 87.812,
15
- "eval_steps_per_second": 2.81,
16
- "total_flos": 0.0,
17
- "train_loss": 0.6860739244864538,
18
- "train_runtime": 316.322,
19
- "train_samples": 6750,
20
- "train_samples_per_second": 21.339,
21
- "train_steps_per_second": 0.164
22
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "HuggingFaceTB/cosmo2-350M-webinst-sc2",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
 
1
  {
2
+ "_name_or_path": "HuggingFaceTB/SmolLM-360M",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
eval_results.json DELETED
@@ -1,16 +0,0 @@
1
- {
2
- "epoch": 0.985781990521327,
3
- "eval_logits/chosen": -0.5211005210876465,
4
- "eval_logits/rejected": -0.7105662226676941,
5
- "eval_logps/chosen": -442.4708557128906,
6
- "eval_logps/rejected": -418.5675354003906,
7
- "eval_loss": 0.6833909749984741,
8
- "eval_rewards/accuracies": 0.59375,
9
- "eval_rewards/chosen": -0.008601006120443344,
10
- "eval_rewards/margins": 0.021825773641467094,
11
- "eval_rewards/rejected": -0.03042677976191044,
12
- "eval_runtime": 8.5409,
13
- "eval_samples": 750,
14
- "eval_samples_per_second": 87.812,
15
- "eval_steps_per_second": 2.81
16
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0c109192ffddcfc2be1ba4ae52a01e5713a98de94e98d90167e218aeebf919cc
3
  size 723674912
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f841de9bf656ea5af3c8d89e5647ee0f39121b28adf4202d1eec02f69619c5e
3
  size 723674912
onnx/model.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2496148b109c3bb6a3a8df92fea43c5647016ba0a2db08f89af30501e2cadf8c
3
- size 1448301209
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:454394e1f92c1479bf71926b2cc845a3e29040c0844ba0d97ce693a390bca40c
3
+ size 1448299818
onnx/model_bnb4.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:537b03aa64065ce45f7bd19b39184e55f13ebe31965354c72b99c159526f8ea9
3
- size 366992362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:359ed0877d941aa2adf227aed8c209017dc0a7de6416ef322df6492356ba50e9
3
+ size 366990971
onnx/model_fp16.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6f18682159811608af15fb542ebe03f3fa7e544cf4e8bc12bd6852c3aca4e6b7
3
- size 724701643
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e617d2597f06572ed87667f62a8a29e18bd5763fcb2606f7ad956b3f42d1cc6
3
+ size 724678342
onnx/model_int8.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:85af34637f211b2905193c8c08819d1c094db0c7a2f5c43984bdc3b04ecdad39
3
- size 363270670
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c42d79415353fe2d1470c2b3e27ad1dd84595cd2d31c93773d93e2df92ab5bcb
3
+ size 363269280
onnx/model_q4.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f27edbac285b53db0f3479698f02f401e88be5e1c865eec1689f668582a3bfa6
3
- size 386651434
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8001535cd703e7c9afe6f6cf8f48e41ec6e162eb677ac39632787ad380ac2d7
3
+ size 386650043
onnx/model_q4f16.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f0adc35f1c264f54f5e03f65df6fa47cfebb1ef41e0442158112964b86df5b4
3
- size 272536796
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1a788453e1393e8642f43ca729b7f2301ba61cc1f8ac1f1904c809869fc1ffb
3
+ size 272513495
onnx/model_quantized.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:85af34637f211b2905193c8c08819d1c094db0c7a2f5c43984bdc3b04ecdad39
3
- size 363270670
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c42d79415353fe2d1470c2b3e27ad1dd84595cd2d31c93773d93e2df92ab5bcb
3
+ size 363269280
onnx/model_uint8.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:db327d1cee0c3d4927e8640be2228264a6b5c038d22d797afaf71ddb37c29945
3
- size 363270784
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f3309c58be313a8dce00de2f9d009e52c273d814ddc230e0a83e7cee8075c63
3
+ size 363269392
runs/Jul15_21-49-55_ip-26-0-167-245/events.out.tfevents.1721080291.ip-26-0-167-245.4053728.0 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5f5dce01aa2e28781812105dc503156ef6f8285cc8c15e77a4b2f17cbfb8eb53
3
- size 9608
 
 
 
 
runs/Jul15_21-49-55_ip-26-0-167-245/events.out.tfevents.1721080634.ip-26-0-167-245.4053728.1 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:958e3bee85da7cc72b429819cff501ffb58ca95731aaf61bdefa71b132d36753
3
- size 815
 
 
 
 
special_tokens_map.json CHANGED
@@ -1,29 +1,23 @@
1
  {
2
  "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>"
 
 
 
 
 
 
 
 
 
 
 
 
5
  ],
6
- "bos_token": {
7
- "content": "<|im_start|>",
8
- "lstrip": false,
9
- "normalized": false,
10
- "rstrip": false,
11
- "single_word": false
12
- },
13
- "eos_token": {
14
- "content": "<|im_end|>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false
19
- },
20
- "pad_token": {
21
- "content": "<|im_end|>",
22
- "lstrip": false,
23
- "normalized": false,
24
- "rstrip": false,
25
- "single_word": false
26
- },
27
  "unk_token": {
28
  "content": "<|endoftext|>",
29
  "lstrip": false,
 
1
  {
2
  "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_start|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|im_end|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
  ],
18
+ "bos_token": "<|im_start|>",
19
+ "eos_token": "<|im_end|>",
20
+ "pad_token": "<|im_end|>",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  "unk_token": {
22
  "content": "<|endoftext|>",
23
  "lstrip": false,
test_prompts.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+
3
+ BASE_PATH = "/fsx/loubna/projects/alignment-handbook/recipes/cosmo2/sft/data"
4
+ TEMPERATURE = 0.2
5
+ TOP_P = 0.9
6
+
7
+ CHECKPOINT = "loubnabnl/smollm-350M-instruct-add-basics"
8
+
9
+ print(f"💾 Loading the model and tokenizer: {CHECKPOINT}...")
10
+ device = "cuda"
11
+ tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)
12
+ model_s = AutoModelForCausalLM.from_pretrained(CHECKPOINT).to(device)
13
+
14
+ print("🧪 Testing single-turn conversations...")
15
+ L = [
16
+ "Hi",
17
+ "Hello",
18
+ "Tell me a joke",
19
+ "Who are you?",
20
+ "What's your name?",
21
+ "How do I make pancakes?",
22
+ "Can you tell me what is gravity?",
23
+ "What is the capital of Morocco?",
24
+ "What's 2+2?",
25
+ "Hi, what is 2+1?",
26
+ "What's 3+5?",
27
+ "Write a poem about Helium",
28
+ "Hi, what are some popular dishes from Japan?",
29
+ ]
30
+
31
+
32
+ for i in range(len(L)):
33
+ print(f"🔮 {L[i]}")
34
+ messages = [{"role": "user", "content": L[i]}]
35
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False)
36
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
37
+ outputs = model_s.generate(
38
+ inputs, max_new_tokens=200, top_p=TOP_P, do_sample=True, temperature=TEMPERATURE
39
+ )
40
+ with open(
41
+ f"{BASE_PATH}/{CHECKPOINT.split('/')[-1]}_temp_{TEMPERATURE}_topp{TOP_P}.txt",
42
+ "a",
43
+ ) as f:
44
+ f.write("=" * 50 + "\n")
45
+ f.write(tokenizer.decode(outputs[0]))
46
+ f.write("\n")
47
+
48
+
49
+ print("🧪 Now testing multi-turn conversations...")
50
+ # Multi-turn conversations
51
+ messages_1 = [
52
+ {"role": "user", "content": "Hi"},
53
+ {"role": "assistant", "content": "Hello! How can I help you today?"},
54
+ {"role": "user", "content": "What's 2+2?"},
55
+ ]
56
+ messages_2 = [
57
+ {"role": "user", "content": "Hi"},
58
+ {"role": "assistant", "content": "Hello! How can I help you today?"},
59
+ {"role": "user", "content": "What's 2+2?"},
60
+ {"role": "assistant", "content": "4"},
61
+ {"role": "user", "content": "Why?"},
62
+ ]
63
+ messages_3 = [
64
+ {"role": "user", "content": "Who are you?"},
65
+ {"role": "assistant", "content": "I am an AI assistant. How can I help you today?"},
66
+ {"role": "user", "content": "What's your name?"},
67
+ ]
68
+ messages_4 = [
69
+ {"role": "user", "content": "Tell me a joke"},
70
+ {"role": "assistant", "content": "Sure! Why did the tomato turn red?"},
71
+ {"role": "user", "content": "Why?"},
72
+ ]
73
+ messages_5 = [
74
+ {"role": "user", "content": "Can you tell me what is gravity?"},
75
+ {
76
+ "role": "assistant",
77
+ "content": "Sure! Gravity is a force that attracts objects toward each other. It is what keeps us on the ground and what makes things fall.",
78
+ },
79
+ {"role": "user", "content": "Who discovered it?"},
80
+ ]
81
+ messages_6 = [
82
+ {"role": "user", "content": "How do I make pancakes?"},
83
+ {
84
+ "role": "assistant",
85
+ "content": "Sure! Here is a simple recipe for pancakes: Ingredients: 1 cup flour, 1 cup milk, 1 egg, 1 tbsp sugar, 1 tsp baking powder, 1/2 tsp salt. Instructions: 1. Mix all the dry ingredients together in a bowl. 2. Add the milk and egg and mix until smooth. 3. Heat a non-stick pan over medium heat. 4. Pour 1/4 cup of batter onto the pan. 5. Cook until bubbles form on the surface, then flip and cook for another minute. 6. Serve with your favorite toppings.",
86
+ },
87
+ {"role": "user", "content": "What are some popular toppings?"},
88
+ ]
89
+
90
+ L = [messages_1, messages_2, messages_3, messages_4, messages_5, messages_6]
91
+
92
+ for i in range(len(L)):
93
+ input_text = tokenizer.apply_chat_template(L[i], tokenize=False)
94
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
95
+ outputs = model_s.generate(
96
+ inputs, max_new_tokens=200, top_p=TOP_P, do_sample=True, temperature=TEMPERATURE
97
+ )
98
+ with open(
99
+ f"{BASE_PATH}/{CHECKPOINT.split('/')[-1]}_temp_{TEMPERATURE}_topp{TOP_P}_MT.txt",
100
+ "a",
101
+ ) as f:
102
+ f.write("=" * 50 + "\n")
103
+ f.write(tokenizer.decode(outputs[0]))
104
+ f.write("\n")
105
+
106
+ print("🔥 Done!")
train_results.json DELETED
@@ -1,9 +0,0 @@
1
- {
2
- "epoch": 0.985781990521327,
3
- "total_flos": 0.0,
4
- "train_loss": 0.6860739244864538,
5
- "train_runtime": 316.322,
6
- "train_samples": 6750,
7
- "train_samples_per_second": 21.339,
8
- "train_steps_per_second": 0.164
9
- }
 
 
 
 
 
 
 
 
 
 
trainer_state.json DELETED
@@ -1,132 +0,0 @@
1
- {
2
- "best_metric": null,
3
- "best_model_checkpoint": null,
4
- "epoch": 0.985781990521327,
5
- "eval_steps": 100,
6
- "global_step": 52,
7
- "is_hyper_param_search": false,
8
- "is_local_process_zero": true,
9
- "is_world_process_zero": true,
10
- "log_history": [
11
- {
12
- "epoch": 0.018957345971563982,
13
- "grad_norm": 3.021558692298453,
14
- "learning_rate": 8.333333333333333e-07,
15
- "logits/chosen": -0.5616407990455627,
16
- "logits/rejected": -0.42516714334487915,
17
- "logps/chosen": -373.83282470703125,
18
- "logps/rejected": -493.9554748535156,
19
- "loss": 0.6931,
20
- "rewards/accuracies": 0.0,
21
- "rewards/chosen": 0.0,
22
- "rewards/margins": 0.0,
23
- "rewards/rejected": 0.0,
24
- "step": 1
25
- },
26
- {
27
- "epoch": 0.1895734597156398,
28
- "grad_norm": 3.23447571449701,
29
- "learning_rate": 4.907293218369499e-06,
30
- "logits/chosen": -0.1685400903224945,
31
- "logits/rejected": -0.19170813262462616,
32
- "logps/chosen": -464.29693603515625,
33
- "logps/rejected": -501.8587341308594,
34
- "loss": 0.6936,
35
- "rewards/accuracies": 0.4097222089767456,
36
- "rewards/chosen": 0.0008683237829245627,
37
- "rewards/margins": 0.0007554867188446224,
38
- "rewards/rejected": 0.00011283738422207534,
39
- "step": 10
40
- },
41
- {
42
- "epoch": 0.3791469194312796,
43
- "grad_norm": 3.9389946840001264,
44
- "learning_rate": 3.941700805287169e-06,
45
- "logits/chosen": -0.27595698833465576,
46
- "logits/rejected": -0.21783480048179626,
47
- "logps/chosen": -438.6907653808594,
48
- "logps/rejected": -475.0658264160156,
49
- "loss": 0.6894,
50
- "rewards/accuracies": 0.4937500059604645,
51
- "rewards/chosen": -0.003008360043168068,
52
- "rewards/margins": 0.0011918289819732308,
53
- "rewards/rejected": -0.00420018844306469,
54
- "step": 20
55
- },
56
- {
57
- "epoch": 0.5687203791469194,
58
- "grad_norm": 3.2779169381175386,
59
- "learning_rate": 2.3293939665883233e-06,
60
- "logits/chosen": -0.012437907047569752,
61
- "logits/rejected": -0.20707044005393982,
62
- "logps/chosen": -476.6265563964844,
63
- "logps/rejected": -474.9481506347656,
64
- "loss": 0.6873,
65
- "rewards/accuracies": 0.53125,
66
- "rewards/chosen": -0.01446505170315504,
67
- "rewards/margins": 0.007696834392845631,
68
- "rewards/rejected": -0.02216188609600067,
69
- "step": 30
70
- },
71
- {
72
- "epoch": 0.7582938388625592,
73
- "grad_norm": 2.8592366061141954,
74
- "learning_rate": 7.936171419533653e-07,
75
- "logits/chosen": -0.4586310386657715,
76
- "logits/rejected": -0.5929983854293823,
77
- "logps/chosen": -422.44293212890625,
78
- "logps/rejected": -402.6429748535156,
79
- "loss": 0.6827,
80
- "rewards/accuracies": 0.574999988079071,
81
- "rewards/chosen": -0.018473980948328972,
82
- "rewards/margins": 0.014362658374011517,
83
- "rewards/rejected": -0.03283664211630821,
84
- "step": 40
85
- },
86
- {
87
- "epoch": 0.9478672985781991,
88
- "grad_norm": 3.296382116125289,
89
- "learning_rate": 2.3285134909173113e-08,
90
- "logits/chosen": 0.08067023754119873,
91
- "logits/rejected": 0.19673587381839752,
92
- "logps/chosen": -483.49212646484375,
93
- "logps/rejected": -536.2080688476562,
94
- "loss": 0.679,
95
- "rewards/accuracies": 0.5874999761581421,
96
- "rewards/chosen": -0.017066333442926407,
97
- "rewards/margins": 0.01992700807750225,
98
- "rewards/rejected": -0.03699334338307381,
99
- "step": 50
100
- },
101
- {
102
- "epoch": 0.985781990521327,
103
- "step": 52,
104
- "total_flos": 0.0,
105
- "train_loss": 0.6860739244864538,
106
- "train_runtime": 316.322,
107
- "train_samples_per_second": 21.339,
108
- "train_steps_per_second": 0.164
109
- }
110
- ],
111
- "logging_steps": 10,
112
- "max_steps": 52,
113
- "num_input_tokens_seen": 0,
114
- "num_train_epochs": 1,
115
- "save_steps": 500,
116
- "stateful_callbacks": {
117
- "TrainerControl": {
118
- "args": {
119
- "should_epoch_stop": false,
120
- "should_evaluate": false,
121
- "should_log": false,
122
- "should_save": false,
123
- "should_training_stop": false
124
- },
125
- "attributes": {}
126
- }
127
- },
128
- "total_flos": 0.0,
129
- "train_batch_size": 2,
130
- "trial_name": null,
131
- "trial_params": null
132
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:753772c371abf783b3f96c5ddc2c75471f7281c7efc51b1f2c0c1b6ddd4988f7
3
- size 6520