File size: 16,623 Bytes
9d8f3cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for SigLIP model."""

import os
import re
import string
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple

import sentencepiece as spm

from transformers.convert_slow_tokenizer import import_protobuf
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.tokenization_utils_base import AddedToken


if TYPE_CHECKING:
    from transformers.tokenization_utils_base import TextInput
from transformers.utils import logging, requires_backends


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/spiece.model",
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "google/siglip-base-patch16-224": 256,
}

SPIECE_UNDERLINE = "▁"


class SiglipTokenizer(PreTrainedTokenizer):
    """
    Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
    this superclass for more information regarding those methods.

    Args:
        vocab_file (`str`):
            [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
            contains the vocabulary necessary to instantiate a tokenizer.
        eos_token (`str`, *optional*, defaults to `"</s>"`):
            The end of sequence token.
        unk_token (`str`, *optional*, defaults to `"<unk>"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        pad_token (`str`, *optional*, defaults to `"</s>"`):
            The token used for padding, for example when batching sequences of different lengths.
        additional_special_tokens (`List[str]`, *optional*):
            Additional special tokens used by the tokenizer.
        sp_model_kwargs (`dict`, *optional*):
            Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
            SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
            to set:

            - `enable_sampling`: Enable subword regularization.
            - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.

              - `nbest_size = {0,1}`: No sampling is performed.
              - `nbest_size > 1`: samples from the nbest_size results.
              - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
                using forward-filtering-and-backward-sampling algorithm.

            - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
              BPE-dropout.
        model_max_length (`int`, *optional*, defaults to 64):
            The maximum length (in number of tokens) for model inputs.
        do_lower_case (`bool`, *optional*, defaults to `True`):
            Whether or not to lowercase the input when tokenizing.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    model_input_names = ["input_ids", "attention_mask"]

    def __init__(
        self,
        vocab_file,
        eos_token="</s>",
        unk_token="<unk>",
        pad_token="</s>",
        additional_special_tokens=None,
        sp_model_kwargs: Optional[Dict[str, Any]] = None,
        model_max_length=64,
        do_lower_case=True,
        **kwargs,
    ) -> None:
        requires_backends(self, "protobuf")

        pad_token = (
            AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True)
            if isinstance(pad_token, str)
            else pad_token
        )
        unk_token = (
            AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True)
            if isinstance(unk_token, str)
            else unk_token
        )
        eos_token = (
            AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True)
            if isinstance(eos_token, str)
            else eos_token
        )

        self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs

        self.do_lower_case = do_lower_case
        self.vocab_file = vocab_file

        self.sp_model = self.get_spm_processor()
        self.vocab_file = vocab_file

        super().__init__(
            eos_token=eos_token,
            unk_token=unk_token,
            pad_token=pad_token,
            additional_special_tokens=additional_special_tokens,
            sp_model_kwargs=self.sp_model_kwargs,
            model_max_length=model_max_length,
            do_lower_case=do_lower_case,
            **kwargs,
        )

    def get_spm_processor(self):
        tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
        with open(self.vocab_file, "rb") as f:
            sp_model = f.read()
            model_pb2 = import_protobuf()
            model = model_pb2.ModelProto.FromString(sp_model)
            normalizer_spec = model_pb2.NormalizerSpec()
            normalizer_spec.add_dummy_prefix = False
            model.normalizer_spec.MergeFrom(normalizer_spec)
            sp_model = model.SerializeToString()
            tokenizer.LoadFromSerializedProto(sp_model)
        return tokenizer

    @property
    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size
    def vocab_size(self):
        return self.sp_model.get_piece_size()

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab
    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask
    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        # normal case: some special tokens
        if token_ids_1 is None:
            return ([0] * len(token_ids_0)) + [1]
        return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present
    def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
        """Do not add eos again if user already added it."""
        if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
            warnings.warn(
                f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
                " eos tokens being added."
            )
            return token_ids
        else:
            return token_ids + [self.eos_token_id]

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences
    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
        use of token type ids, therefore a list of zeros is returned.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of zeros.
        """
        eos = [self.eos_token_id]

        if token_ids_1 is None:
            return len(token_ids_0 + eos) * [0]
        return len(token_ids_0 + eos + token_ids_1 + eos) * [0]

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens
    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A sequence has the following format:

        - single sequence: `X </s>`
        - pair of sequences: `A </s> B </s>`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """
        token_ids_0 = self._add_eos_if_not_present(token_ids_0)
        if token_ids_1 is None:
            return token_ids_0
        else:
            token_ids_1 = self._add_eos_if_not_present(token_ids_1)
            return token_ids_0 + token_ids_1

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__
    def __getstate__(self):
        state = self.__dict__.copy()
        state["sp_model"] = None
        return state

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__
    def __setstate__(self, d):
        self.__dict__ = d

        # for backward compatibility
        if not hasattr(self, "sp_model_kwargs"):
            self.sp_model_kwargs = {}

        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
        self.sp_model.Load(self.vocab_file)

    def remove_punctuation(self, text: str) -> str:
        return text.translate(str.maketrans("", "", string.punctuation))

    # source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
    def canonicalize_text(self, text, *, keep_punctuation_exact_string=None):
        """Returns canonicalized `text` (puncuation removed).

        Args:
            text (`str`):
                String to be canonicalized.
            keep_punctuation_exact_string (`str`, *optional*):
                If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}'
                (but will still remove '{' and '}' that appear separately).
        """
        if keep_punctuation_exact_string:
            text = keep_punctuation_exact_string.join(
                self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string)
            )
        else:
            text = self.remove_punctuation(text)
        text = re.sub(r"\s+", " ", text)
        text = text.strip()

        return text

    def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
        """
        Converts a string to a list of tokens.
        """
        tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)

        if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
            tokens = tokens[1:]
        return tokens

    @property
    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length
    def unk_token_length(self):
        return len(self.sp_model.encode(str(self.unk_token)))

    def _tokenize(self, text, **kwargs):
        """
        Returns a tokenized string.

        We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
        SPIECE_UNDERLINE.

        For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`.

        Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
        `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
        """
        text = self.canonicalize_text(text, keep_punctuation_exact_string=None)
        tokens = self.sp_model.encode(text, out_type=str)

        # 1. Encode string + prefix ex: "<unk> Hey"
        tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
        # 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
        return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id
    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.sp_model.piece_to_id(token)

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        token = self.sp_model.IdToPiece(index)
        return token

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.convert_tokens_to_string
    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        current_sub_tokens = []
        # since we manually add the prefix space, we have to remove it
        tokens[0] = tokens[0].lstrip(SPIECE_UNDERLINE)
        out_string = ""
        prev_is_special = False
        for token in tokens:
            # make sure that special tokens are not decoded using sentencepiece model
            if token in self.all_special_tokens:
                if not prev_is_special:
                    out_string += " "
                out_string += self.sp_model.decode(current_sub_tokens) + token
                prev_is_special = True
                current_sub_tokens = []
            else:
                current_sub_tokens.append(token)
                prev_is_special = False
        out_string += self.sp_model.decode(current_sub_tokens)
        return out_string.strip()

    # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary
    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return
        out_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
        )

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
            copyfile(self.vocab_file, out_vocab_file)
        elif not os.path.isfile(self.vocab_file):
            with open(out_vocab_file, "wb") as fi:
                content_spiece_model = self.sp_model.serialized_model_proto()
                fi.write(content_spiece_model)

        return (out_vocab_file,)