File size: 20,830 Bytes
1f7e8e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert SigLIP checkpoints from the original repository.
URL: https://github.com/google-research/big_vision/tree/main
"""
import argparse
import collections
from pathlib import Path
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from numpy import load
from PIL import Image
from transformers import SiglipConfig, SiglipImageProcessor, SiglipModel, SiglipProcessor, SiglipTokenizer
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
model_name_to_checkpoint = {
# base checkpoints
"siglip-base-patch16-224": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_224_63724782.npz",
"siglip-base-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_256_60500360.npz",
"siglip-base-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_384_68578854.npz",
"siglip-base-patch16-512": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_512_68580893.npz",
# large checkpoints
"siglip-large-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_256_60552751.npz",
"siglip-large-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_384_63634585.npz",
# multilingual checkpoint
"siglip-base-patch16-256-i18n": "/Users/nielsrogge/Documents/SigLIP/webli_i18n_b16_256_66117334.npz",
# so400m checkpoints
"siglip-so400m-patch14-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_so400m_384_58765454.npz",
}
model_name_to_image_size = {
"siglip-base-patch16-224": 224,
"siglip-base-patch16-256": 256,
"siglip-base-patch16-384": 384,
"siglip-base-patch16-512": 512,
"siglip-large-patch16-256": 256,
"siglip-large-patch16-384": 384,
"siglip-base-patch16-256-i18n": 256,
"siglip-so400m-patch14-384": 384,
}
def get_siglip_config(model_name):
config = SiglipConfig()
vocab_size = 250000 if "i18n" in model_name else 32000
image_size = model_name_to_image_size[model_name]
patch_size = 16 if "patch16" in model_name else 14
# size of the architecture
config.vision_config.image_size = image_size
config.vision_config.patch_size = patch_size
config.text_config.vocab_size = vocab_size
if "base" in model_name:
pass
elif "large" in model_name:
config.text_config.hidden_size = 1024
config.text_config.intermediate_size = 4096
config.text_config.num_hidden_layers = 24
config.text_config.num_attention_heads = 16
config.vision_config.hidden_size = 1024
config.vision_config.intermediate_size = 4096
config.vision_config.num_hidden_layers = 24
config.vision_config.num_attention_heads = 16
elif "so400m" in model_name:
config.text_config.hidden_size = 1152
config.text_config.intermediate_size = 4304
config.text_config.num_hidden_layers = 27
config.text_config.num_attention_heads = 16
config.vision_config.hidden_size = 1152
config.vision_config.intermediate_size = 4304
config.vision_config.num_hidden_layers = 27
config.vision_config.num_attention_heads = 16
else:
raise ValueError("Model not supported")
return config
def create_rename_keys(config):
rename_keys = []
# fmt: off
# vision encoder
rename_keys.append(("params/img/embedding/kernel", "vision_model.embeddings.patch_embedding.weight"))
rename_keys.append(("params/img/embedding/bias", "vision_model.embeddings.patch_embedding.bias"))
rename_keys.append(("params/img/pos_embedding", "vision_model.embeddings.position_embedding.weight"))
for i in range(config.vision_config.num_hidden_layers):
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/scale", f"vision_model.encoder.layers.{i}.layer_norm1.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/scale", f"vision_model.encoder.layers.{i}.layer_norm2.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"vision_model.encoder.layers.{i}.mlp.fc1.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"vision_model.encoder.layers.{i}.mlp.fc2.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"vision_model.encoder.layers.{i}.self_attn.k_proj.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"vision_model.encoder.layers.{i}.self_attn.k_proj.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"vision_model.encoder.layers.{i}.self_attn.v_proj.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"vision_model.encoder.layers.{i}.self_attn.v_proj.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"vision_model.encoder.layers.{i}.self_attn.q_proj.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"vision_model.encoder.layers.{i}.self_attn.q_proj.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"vision_model.encoder.layers.{i}.self_attn.out_proj.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"vision_model.encoder.layers.{i}.self_attn.out_proj.bias"))
rename_keys.append(("params/img/Transformer/encoder_norm/scale", "vision_model.post_layernorm.weight"))
rename_keys.append(("params/img/Transformer/encoder_norm/bias", "vision_model.post_layernorm.bias"))
rename_keys.append(("params/img/MAPHead_0/probe", "vision_model.head.probe"))
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/scale", "vision_model.head.layernorm.weight"))
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/bias", "vision_model.head.layernorm.bias"))
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/kernel", "vision_model.head.mlp.fc1.weight"))
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/bias", "vision_model.head.mlp.fc1.bias"))
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/kernel", "vision_model.head.mlp.fc2.weight"))
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/bias", "vision_model.head.mlp.fc2.bias"))
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/kernel", "vision_model.head.attention.out_proj.weight"))
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/bias", "vision_model.head.attention.out_proj.bias"))
# text encoder
rename_keys.append(("params/txt/Embed_0/embedding", "text_model.embeddings.token_embedding.weight"))
rename_keys.append(("params/txt/pos_embedding", "text_model.embeddings.position_embedding.weight"))
for i in range(config.text_config.num_hidden_layers):
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/scale", f"text_model.encoder.layers.{i}.layer_norm1.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/bias", f"text_model.encoder.layers.{i}.layer_norm1.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/scale", f"text_model.encoder.layers.{i}.layer_norm2.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/bias", f"text_model.encoder.layers.{i}.layer_norm2.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"text_model.encoder.layers.{i}.mlp.fc1.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"text_model.encoder.layers.{i}.mlp.fc1.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"text_model.encoder.layers.{i}.mlp.fc2.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"text_model.encoder.layers.{i}.mlp.fc2.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"text_model.encoder.layers.{i}.self_attn.k_proj.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"text_model.encoder.layers.{i}.self_attn.k_proj.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"text_model.encoder.layers.{i}.self_attn.v_proj.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"text_model.encoder.layers.{i}.self_attn.v_proj.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"text_model.encoder.layers.{i}.self_attn.q_proj.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"text_model.encoder.layers.{i}.self_attn.q_proj.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"text_model.encoder.layers.{i}.self_attn.out_proj.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"text_model.encoder.layers.{i}.self_attn.out_proj.bias"))
rename_keys.append(("params/txt/Encoder_0/encoder_norm/scale", "text_model.final_layer_norm.weight"))
rename_keys.append(("params/txt/Encoder_0/encoder_norm/bias", "text_model.final_layer_norm.bias"))
rename_keys.append(("params/txt/head/kernel", "text_model.head.weight"))
rename_keys.append(("params/txt/head/bias", "text_model.head.bias"))
# learned temperature and bias
rename_keys.append(("params/t", "logit_scale"))
rename_keys.append(("params/b", "logit_bias"))
# fmt: on
return rename_keys
def rename_key(dct, old, new, config):
val = dct.pop(old)
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "vision" in new:
val = val.reshape(-1, config.vision_config.hidden_size)
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "text" in new:
val = val.reshape(-1, config.text_config.hidden_size)
if "patch_embedding.weight" in new:
val = val.transpose(3, 2, 0, 1)
elif new.endswith("weight") and "position_embedding" not in new and "token_embedding" not in new:
val = val.T
if "position_embedding" in new and "vision" in new:
val = val.reshape(-1, config.vision_config.hidden_size)
if "position_embedding" in new and "text" in new:
val = val.reshape(-1, config.text_config.hidden_size)
if new.endswith("bias"):
val = val.reshape(-1)
dct[new] = torch.from_numpy(val)
def read_in_q_k_v_head(state_dict, config):
# read in individual input projection layers
key_proj_weight = (
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/kernel")
.reshape(-1, config.vision_config.hidden_size)
.T
)
key_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/bias").reshape(-1)
value_proj_weight = (
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/kernel")
.reshape(-1, config.vision_config.hidden_size)
.T
)
value_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/bias").reshape(-1)
query_proj_weight = (
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/kernel")
.reshape(-1, config.vision_config.hidden_size)
.T
)
query_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/bias").reshape(-1)
# next, add them to the state dict as a single matrix + vector
state_dict["vision_model.head.attention.in_proj_weight"] = torch.from_numpy(
np.concatenate([query_proj_weight, key_proj_weight, value_proj_weight], axis=0)
)
state_dict["vision_model.head.attention.in_proj_bias"] = torch.from_numpy(
np.concatenate([query_proj_bias, key_proj_bias, value_proj_bias], axis=0)
)
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
def flatten_nested_dict(params, parent_key="", sep="/"):
items = []
for k, v in params.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, collections.abc.MutableMapping):
items.extend(flatten_nested_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
@torch.no_grad()
def convert_siglip_checkpoint(model_name, pytorch_dump_folder_path, verify_logits=True, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our SigLIP structure.
"""
# define default SigLIP configuration
config = get_siglip_config(model_name)
# get checkpoint
checkpoint = model_name_to_checkpoint[model_name]
# get vocab file
if "i18n" in model_name:
vocab_file = "/Users/nielsrogge/Documents/SigLIP/multilingual_vocab/sentencepiece.model"
else:
vocab_file = "/Users/nielsrogge/Documents/SigLIP/english_vocab/sentencepiece.model"
# load original state dict
data = load(checkpoint)
state_dict = flatten_nested_dict(data)
# remove and rename some keys
rename_keys = create_rename_keys(config)
for src, dest in rename_keys:
rename_key(state_dict, src, dest, config)
# qkv matrices of attention pooling head need special treatment
read_in_q_k_v_head(state_dict, config)
# load HuggingFace model
model = SiglipModel(config).eval()
model.load_state_dict(state_dict)
# create processor
# important: make tokenizer not return attention_mask since original one doesn't require it
image_size = config.vision_config.image_size
size = {"height": image_size, "width": image_size}
image_processor = SiglipImageProcessor(size=size)
tokenizer = SiglipTokenizer(vocab_file=vocab_file, model_input_names=["input_ids"])
processor = SiglipProcessor(image_processor=image_processor, tokenizer=tokenizer)
# verify on dummy images and texts
url_1 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-ipod.jpg"
image_1 = Image.open(requests.get(url_1, stream=True).raw).convert("RGB")
url_2 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-blank.jpg"
image_2 = Image.open(requests.get(url_2, stream=True).raw).convert("RGB")
texts = ["an apple", "a picture of an apple"]
inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", padding="max_length")
# verify input_ids against original ones
if image_size == 224:
filename = "siglip_pixel_values.pt"
elif image_size == 256:
filename = "siglip_pixel_values_256.pt"
elif image_size == 384:
filename = "siglip_pixel_values_384.pt"
elif image_size == 512:
filename = "siglip_pixel_values_512.pt"
else:
raise ValueError("Image size not supported")
filepath = hf_hub_download(repo_id="nielsr/test-image", filename=filename, repo_type="dataset")
original_pixel_values = torch.load(filepath)
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="siglip_input_ids.pt", repo_type="dataset")
original_input_ids = torch.load(filepath)
if "i18n" not in model_name:
assert inputs.input_ids.tolist() == original_input_ids.tolist()
print("Mean of original pixel values:", original_pixel_values.mean())
print("Mean of new pixel values:", inputs.pixel_values.mean())
# note: we're testing with original pixel values here since we don't have exact pixel values
with torch.no_grad():
outputs = model(input_ids=inputs.input_ids, pixel_values=original_pixel_values)
# with torch.no_grad():
# outputs = model(input_ids=inputs.input_ids, pixel_values=inputs.pixel_values)
print(outputs.logits_per_image[:3, :3])
probs = torch.sigmoid(outputs.logits_per_image) # these are the probabilities
print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
print(f"{probs[0][1]:.1%} that image 0 is '{texts[1]}'")
if verify_logits:
if model_name == "siglip-base-patch16-224":
expected_slice = torch.tensor(
[[-2.9621, -2.1672], [-0.2713, 0.2910]],
)
elif model_name == "siglip-base-patch16-256":
expected_slice = torch.tensor(
[[-3.1146, -1.9894], [-0.7312, 0.6387]],
)
elif model_name == "siglip-base-patch16-384":
expected_slice = torch.tensor(
[[-2.8098, -2.1891], [-0.4242, 0.4102]],
)
elif model_name == "siglip-base-patch16-512":
expected_slice = torch.tensor(
[[-2.7899, -2.2668], [-0.4295, -0.0735]],
)
elif model_name == "siglip-large-patch16-256":
expected_slice = torch.tensor(
[[-1.5827, -0.5801], [-0.9153, 0.1363]],
)
elif model_name == "siglip-large-patch16-384":
expected_slice = torch.tensor(
[[-2.1523, -0.2899], [-0.2959, 0.7884]],
)
elif model_name == "siglip-so400m-patch14-384":
expected_slice = torch.tensor([[-1.2441, -0.6649], [-0.7060, 0.7374]])
elif model_name == "siglip-base-patch16-256-i18n":
expected_slice = torch.tensor(
[[-0.9064, 0.1073], [-0.0299, 0.5304]],
)
assert torch.allclose(outputs.logits_per_image[:3, :3], expected_slice, atol=1e-4)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving processor to {pytorch_dump_folder_path}")
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model.push_to_hub(f"nielsr/{model_name}")
processor.push_to_hub(f"nielsr/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="siglip-base-patch16-224",
type=str,
choices=model_name_to_checkpoint.keys(),
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--verify_logits",
action="store_false",
help="Whether to verify logits against the original implementation.",
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_siglip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.verify_logits, args.push_to_hub)
|