|
from typing import Any, Dict |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from peft import PeftConfig, PeftModel |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
try: |
|
config = PeftConfig.from_pretrained(path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
return_dict=True, |
|
load_in_8bit=True, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
model.resize_token_embeddings(len(self.tokenizer)) |
|
model = PeftModel.from_pretrained(model, path) |
|
except Exception: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
device_map="auto", |
|
load_in_8bit=True, |
|
torch_dtype=torch.float16, |
|
) |
|
self.model = model |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device) |
|
|
|
|
|
if parameters is not None: |
|
outputs = self.model.generate(**inputs, **parameters) |
|
else: |
|
outputs = self.model.generate(**inputs) |
|
|
|
|
|
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return [{"generated_text": prediction}] |
|
|