File size: 4,702 Bytes
e8c1d1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
tags:
- generated_from_trainer
model-index:
- name: icdar23-entrydetector_labelledtext_breaks_indents_left_diff_right_ref
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# icdar23-entrydetector_labelledtext_breaks_indents_left_diff_right_ref

This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2515
- Act: {'precision': 0.8046783625730994, 'recall': 0.9017038007863696, 'f1': 0.8504326328800988, 'number': 1526}
- Cardinal: {'precision': 0.9451428571428572, 'recall': 0.9538638985005767, 'f1': 0.9494833524684271, 'number': 2601}
- Ebegin: {'precision': 0.9940431868950111, 'recall': 0.9910913140311804, 'f1': 0.9925650557620818, 'number': 2694}
- Eend: {'precision': 0.9988751406074241, 'recall': 0.9859363434492968, 'f1': 0.9923635686347551, 'number': 2702}
- Ft: {'precision': 0.2, 'recall': 0.2857142857142857, 'f1': 0.23529411764705882, 'number': 21}
- Loc: {'precision': 0.9071332436069987, 'recall': 0.935072142064373, 'f1': 0.9208908320808854, 'number': 3604}
- Per: {'precision': 0.9300651354130957, 'recall': 0.9345504650361695, 'f1': 0.9323024054982818, 'number': 2903}
- Titre: {'precision': 0.5234042553191489, 'recall': 0.82, 'f1': 0.6389610389610388, 'number': 150}
- Overall Precision: 0.9287
- Overall Recall: 0.9507
- Overall F1: 0.9396
- Overall Accuracy: 0.9459

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 7500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.07  | 300  | 0.2219          | 0.8682    | 0.9280 | 0.8971 | 0.9525   |
| 0.4302        | 0.14  | 600  | 0.1580          | 0.9429    | 0.9488 | 0.9458 | 0.9658   |
| 0.4302        | 0.21  | 900  | 0.1575          | 0.9398    | 0.9429 | 0.9413 | 0.9597   |
| 0.1819        | 0.29  | 1200 | 0.1236          | 0.9447    | 0.9542 | 0.9495 | 0.9686   |
| 0.1537        | 0.36  | 1500 | 0.1312          | 0.9543    | 0.9486 | 0.9514 | 0.9670   |
| 0.1537        | 0.43  | 1800 | 0.1337          | 0.9487    | 0.9559 | 0.9523 | 0.9679   |
| 0.119         | 0.5   | 2100 | 0.1198          | 0.9554    | 0.9556 | 0.9555 | 0.9702   |
| 0.119         | 0.57  | 2400 | 0.1128          | 0.9467    | 0.9641 | 0.9553 | 0.9707   |
| 0.1098        | 0.64  | 2700 | 0.1215          | 0.9528    | 0.9607 | 0.9567 | 0.9713   |
| 0.1118        | 0.72  | 3000 | 0.1099          | 0.9482    | 0.9635 | 0.9558 | 0.9711   |
| 0.1118        | 0.79  | 3300 | 0.1140          | 0.9541    | 0.9684 | 0.9612 | 0.9727   |
| 0.094         | 0.86  | 3600 | 0.0969          | 0.9581    | 0.9654 | 0.9617 | 0.9748   |
| 0.094         | 0.93  | 3900 | 0.1089          | 0.9564    | 0.9664 | 0.9614 | 0.9755   |
| 0.0895        | 1.0   | 4200 | 0.1158          | 0.9574    | 0.9662 | 0.9618 | 0.9746   |
| 0.0626        | 1.07  | 4500 | 0.1072          | 0.9479    | 0.9709 | 0.9593 | 0.9747   |
| 0.0626        | 1.14  | 4800 | 0.1060          | 0.9549    | 0.9682 | 0.9615 | 0.9735   |
| 0.0474        | 1.22  | 5100 | 0.1172          | 0.9462    | 0.9718 | 0.9588 | 0.9723   |
| 0.0474        | 1.29  | 5400 | 0.1019          | 0.9550    | 0.9698 | 0.9624 | 0.9764   |
| 0.0554        | 1.36  | 5700 | 0.1086          | 0.9473    | 0.9700 | 0.9585 | 0.9737   |
| 0.0416        | 1.43  | 6000 | 0.1175          | 0.9514    | 0.9714 | 0.9613 | 0.9737   |
| 0.0416        | 1.5   | 6300 | 0.1143          | 0.9536    | 0.9718 | 0.9626 | 0.9742   |
| 0.0514        | 1.57  | 6600 | 0.1113          | 0.9618    | 0.9679 | 0.9648 | 0.9749   |
| 0.0514        | 1.65  | 6900 | 0.1084          | 0.9595    | 0.9709 | 0.9652 | 0.9762   |
| 0.0377        | 1.72  | 7200 | 0.1102          | 0.9601    | 0.9706 | 0.9653 | 0.9759   |
| 0.0437        | 1.79  | 7500 | 0.1123          | 0.9585    | 0.9710 | 0.9647 | 0.9757   |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2