HorcruxNo13's picture
Model save
c9c31f9 verified
|
raw
history blame
5.63 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: beit-base-patch16-224
    results: []

beit-base-patch16-224

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3575
  • Accuracy: 0.9456
  • Precision: 0.9498
  • Recall: 0.9456
  • F1 Score: 0.9473

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
No log 0.94 4 0.3212 0.8475 0.8711 0.8475 0.7915
No log 1.88 8 0.2355 0.8983 0.8925 0.8983 0.8937
No log 2.82 12 0.3134 0.8644 0.8834 0.8644 0.8243
0.2493 4.0 17 0.2434 0.8814 0.8962 0.8814 0.8534
0.2493 4.94 21 0.3406 0.8983 0.9094 0.8983 0.8794
0.2493 5.88 25 0.1131 0.9322 0.9300 0.9322 0.9291
0.2493 6.82 29 0.1727 0.9153 0.9435 0.9153 0.9215
0.0374 8.0 34 0.6181 0.8644 0.8834 0.8644 0.8243
0.0374 8.94 38 0.3249 0.9153 0.9125 0.9153 0.9135
0.0374 9.88 42 0.5308 0.8983 0.8934 0.8983 0.8876
0.007 10.82 46 0.4767 0.9153 0.9119 0.9153 0.9090
0.007 12.0 51 0.3883 0.8983 0.8925 0.8983 0.8937
0.007 12.94 55 0.3627 0.8983 0.8934 0.8983 0.8876
0.007 13.88 59 0.2783 0.9492 0.9479 0.9492 0.9481
0.0012 14.82 63 0.1934 0.9492 0.9519 0.9492 0.9501
0.0012 16.0 68 0.1670 0.9661 0.9661 0.9661 0.9661
0.0012 16.94 72 0.1783 0.9492 0.9479 0.9492 0.9481
0.0001 17.88 76 0.4825 0.9322 0.9373 0.9322 0.9251
0.0001 18.82 80 0.9010 0.8983 0.9094 0.8983 0.8794
0.0001 20.0 85 0.1802 0.9661 0.9718 0.9661 0.9673
0.0001 20.94 89 0.5658 0.9153 0.9119 0.9153 0.9090
0.0037 21.88 93 0.8331 0.9322 0.9373 0.9322 0.9251
0.0037 22.82 97 0.8074 0.9153 0.9119 0.9153 0.9090
0.0037 24.0 102 0.4763 0.8814 0.8771 0.8814 0.8788
0.0002 24.94 106 0.5553 0.9153 0.9119 0.9153 0.9090
0.0002 25.88 110 0.8220 0.9153 0.9231 0.9153 0.9032
0.0002 26.82 114 0.5367 0.9322 0.9373 0.9322 0.9251
0.0002 28.0 119 0.4401 0.9153 0.9298 0.9153 0.9194
0.0037 28.94 123 0.4138 0.9153 0.9125 0.9153 0.9135
0.0037 29.88 127 0.7232 0.8983 0.9094 0.8983 0.8794
0.0037 30.82 131 0.3690 0.9322 0.9373 0.9322 0.9251
0.0115 32.0 136 0.2730 0.9322 0.9400 0.9322 0.9346
0.0115 32.94 140 0.2101 0.9661 0.9661 0.9661 0.9661
0.0115 33.88 144 0.1814 0.9661 0.9661 0.9661 0.9661
0.0115 34.82 148 0.1641 0.9661 0.9661 0.9661 0.9661
0.0013 36.0 153 0.1600 0.9492 0.9479 0.9492 0.9481
0.0013 36.94 157 0.1709 0.9661 0.9674 0.9661 0.9646
0.0013 37.88 161 0.1913 0.9661 0.9674 0.9661 0.9646
0.0001 38.82 165 0.2047 0.9661 0.9674 0.9661 0.9646
0.0001 40.0 170 0.2030 0.9661 0.9674 0.9661 0.9646
0.0001 40.94 174 0.1960 0.9661 0.9674 0.9661 0.9646
0.0001 41.88 178 0.1936 0.9661 0.9674 0.9661 0.9646
0.0003 42.35 180 0.1934 0.9661 0.9674 0.9661 0.9646

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2