HorcruxNo13's picture
Model save
17849c0
|
raw
history blame
4.83 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: beit-base-patch16-224
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.85
          - name: Precision
            type: precision
            value: 0.8455590062111802
          - name: Recall
            type: recall
            value: 0.85

beit-base-patch16-224

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4871
  • Accuracy: 0.85
  • Precision: 0.8456
  • Recall: 0.85
  • F1 Score: 0.8464

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
No log 1.0 4 0.5784 0.7333 0.5378 0.7333 0.6205
No log 2.0 8 0.5813 0.7375 0.7030 0.7375 0.6441
No log 3.0 12 0.5486 0.7417 0.7297 0.7417 0.7343
No log 4.0 16 0.5394 0.7542 0.7333 0.7542 0.7370
No log 5.0 20 0.5067 0.775 0.7658 0.775 0.7321
No log 6.0 24 0.5542 0.7958 0.7966 0.7958 0.7613
No log 7.0 28 0.4753 0.7958 0.7834 0.7958 0.7758
0.5325 8.0 32 0.5265 0.7792 0.7661 0.7792 0.7448
0.5325 9.0 36 0.4789 0.8208 0.8134 0.8208 0.8067
0.5325 10.0 40 0.4939 0.7875 0.7932 0.7875 0.7900
0.5325 11.0 44 0.4917 0.8042 0.8032 0.8042 0.8037
0.5325 12.0 48 0.5001 0.8083 0.8019 0.8083 0.8041
0.5325 13.0 52 0.4742 0.8 0.7897 0.8 0.7915
0.5325 14.0 56 0.5439 0.7875 0.8037 0.7875 0.7932
0.3381 15.0 60 0.5436 0.8333 0.8265 0.8333 0.8263
0.3381 16.0 64 0.4989 0.8375 0.8312 0.8375 0.8288
0.3381 17.0 68 0.4949 0.8333 0.8282 0.8333 0.8296
0.3381 18.0 72 0.4709 0.8292 0.8283 0.8292 0.8287
0.3381 19.0 76 0.4680 0.8167 0.8133 0.8167 0.8147
0.3381 20.0 80 0.5053 0.8417 0.8362 0.8417 0.8371
0.3381 21.0 84 0.5480 0.8458 0.8459 0.8458 0.8322
0.3381 22.0 88 0.4548 0.8542 0.8512 0.8542 0.8522
0.2076 23.0 92 0.4891 0.8458 0.8407 0.8458 0.8376
0.2076 24.0 96 0.4981 0.85 0.8486 0.85 0.8492
0.2076 25.0 100 0.4993 0.8458 0.8426 0.8458 0.8438
0.2076 26.0 104 0.5026 0.8542 0.8503 0.8542 0.8514
0.2076 27.0 108 0.4944 0.8542 0.8522 0.8542 0.8530
0.2076 28.0 112 0.4821 0.8542 0.8549 0.8542 0.8545
0.2076 29.0 116 0.4714 0.8583 0.8559 0.8583 0.8568
0.138 30.0 120 0.4705 0.8583 0.8559 0.8583 0.8568

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3