File size: 2,072 Bytes
f62a09c 0b457e5 f62a09c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
base_model: google/mt5-large
model-index:
- name: mt5_emotion_single
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5_emotion_single
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6681
- Accuracy: 0.805
- Precision: 0.8255
- Recall: 0.805
- F1: 0.7872
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 0.4 | 50 | 1.6075 | 0.205 | 0.2154 | 0.205 | 0.0906 |
| No log | 0.8 | 100 | 1.5035 | 0.385 | 0.2074 | 0.385 | 0.2506 |
| 1.5333 | 1.2 | 150 | 1.4960 | 0.44 | 0.4163 | 0.44 | 0.3830 |
| 1.5333 | 1.6 | 200 | 0.8993 | 0.73 | 0.7853 | 0.73 | 0.7005 |
| 0.7703 | 2.0 | 250 | 1.2461 | 0.63 | 0.6412 | 0.63 | 0.5691 |
| 0.7703 | 2.4 | 300 | 1.4746 | 0.58 | 0.5874 | 0.58 | 0.5419 |
| 0.7703 | 2.8 | 350 | 1.4532 | 0.605 | 0.6832 | 0.605 | 0.5636 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|