File size: 2,410 Bytes
998a03f 0d2f9a4 998a03f 0d2f9a4 998a03f 0d2f9a4 998a03f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: peft
tags:
- llama-factory
- lora
- generated_from_trainer
base_model: google/gemma-7b
model-index:
- name: Gemma_AAID_new_mixed_train_final
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma_AAID_new_mixed_train_final
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the AAID_new_mixed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6587
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.1586 | 0.0109 | 10 | 0.7907 |
| 0.6717 | 0.0219 | 20 | 0.7609 |
| 0.5741 | 0.0328 | 30 | 0.7404 |
| 0.5809 | 0.0438 | 40 | 0.7739 |
| 0.5313 | 0.0547 | 50 | 0.7002 |
| 0.4879 | 0.0656 | 60 | 0.7159 |
| 0.4665 | 0.0766 | 70 | 0.7063 |
| 0.4509 | 0.0875 | 80 | 0.6992 |
| 0.4542 | 0.0984 | 90 | 0.6915 |
| 0.4188 | 0.1094 | 100 | 0.6587 |
| 0.4131 | 0.1203 | 110 | 0.6637 |
| 0.4137 | 0.1313 | 120 | 0.6902 |
| 0.4087 | 0.1422 | 130 | 0.6949 |
| 0.3968 | 0.1531 | 140 | 0.6713 |
| 0.4048 | 0.1641 | 150 | 0.6878 |
| 0.3953 | 0.1750 | 160 | 0.6907 |
| 0.3873 | 0.1859 | 170 | 0.6938 |
| 0.3821 | 0.1969 | 180 | 0.6848 |
| 0.394 | 0.2078 | 190 | 0.7039 |
| 0.3893 | 0.2188 | 200 | 0.6831 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |