File size: 2,900 Bytes
cd47d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: cord-layoutlmv3
      type: cord-layoutlmv3
      config: cord
      split: test
      args: cord
    metrics:
    - name: Precision
      type: precision
      value: 0.9256806475349522
    - name: Recall
      type: recall
      value: 0.9416167664670658
    - name: F1
      type: f1
      value: 0.9335807050092764
    - name: Accuracy
      type: accuracy
      value: 0.9460950764006791
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2933
- Precision: 0.9257
- Recall: 0.9416
- F1: 0.9336
- Accuracy: 0.9461

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 4.17  | 250  | 1.0415          | 0.7691    | 0.8129 | 0.7904 | 0.8132   |
| 1.3968        | 8.33  | 500  | 0.5604          | 0.8509    | 0.8757 | 0.8632 | 0.8722   |
| 1.3968        | 12.5  | 750  | 0.4191          | 0.8833    | 0.9064 | 0.8947 | 0.9092   |
| 0.3531        | 16.67 | 1000 | 0.3352          | 0.9139    | 0.9296 | 0.9217 | 0.9308   |
| 0.3531        | 20.83 | 1250 | 0.3185          | 0.9189    | 0.9326 | 0.9257 | 0.9351   |
| 0.161         | 25.0  | 1500 | 0.3069          | 0.9177    | 0.9349 | 0.9262 | 0.9389   |
| 0.161         | 29.17 | 1750 | 0.2989          | 0.9270    | 0.9409 | 0.9339 | 0.9448   |
| 0.0956        | 33.33 | 2000 | 0.2897          | 0.9242    | 0.9394 | 0.9317 | 0.9440   |
| 0.0956        | 37.5  | 2250 | 0.2893          | 0.9242    | 0.9401 | 0.9321 | 0.9452   |
| 0.0704        | 41.67 | 2500 | 0.2933          | 0.9257    | 0.9416 | 0.9336 | 0.9461   |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3