juletxara commited on
Commit
a814d7f
·
1 Parent(s): 3daa1ad

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: alpaca-lora-7b-en-pt-es-ca-eu-gl-at
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # alpaca-lora-7b-en-pt-es-ca-eu-gl-at
14
+
15
+ This model is a fine-tuned version of [decapoda-research/llama-7b-hf](https://huggingface.co/decapoda-research/llama-7b-hf) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 1.0667
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 0.0003
37
+ - train_batch_size: 26
38
+ - eval_batch_size: 26
39
+ - seed: 42
40
+ - distributed_type: multi-GPU
41
+ - gradient_accumulation_steps: 5
42
+ - total_train_batch_size: 130
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_ratio: 0.03
46
+ - num_epochs: 1
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 1.3772 | 0.04 | 100 | 1.3860 |
54
+ | 1.3043 | 0.07 | 200 | 1.2904 |
55
+ | 1.2307 | 0.11 | 300 | 1.2409 |
56
+ | 1.2132 | 0.15 | 400 | 1.2086 |
57
+ | 1.1987 | 0.19 | 500 | 1.1854 |
58
+ | 1.1551 | 0.22 | 600 | 1.1660 |
59
+ | 1.1613 | 0.26 | 700 | 1.1516 |
60
+ | 1.144 | 0.3 | 800 | 1.1407 |
61
+ | 1.1494 | 0.34 | 900 | 1.1297 |
62
+ | 1.1072 | 0.37 | 1000 | 1.1196 |
63
+ | 1.1302 | 0.41 | 1100 | 1.1117 |
64
+ | 1.1074 | 0.45 | 1200 | 1.1058 |
65
+ | 1.0846 | 0.48 | 1300 | 1.0995 |
66
+ | 1.086 | 0.52 | 1400 | 1.0935 |
67
+ | 1.0793 | 0.56 | 1500 | 1.0889 |
68
+ | 1.0931 | 0.6 | 1600 | 1.0847 |
69
+ | 1.0905 | 0.63 | 1700 | 1.0804 |
70
+ | 1.0793 | 0.67 | 1800 | 1.0775 |
71
+ | 1.0795 | 0.71 | 1900 | 1.0748 |
72
+ | 1.0861 | 0.74 | 2000 | 1.0725 |
73
+ | 1.0881 | 0.78 | 2100 | 1.0705 |
74
+ | 1.0673 | 0.82 | 2200 | 1.0691 |
75
+ | 1.0626 | 0.86 | 2300 | 1.0681 |
76
+ | 1.0633 | 0.89 | 2400 | 1.0674 |
77
+ | 1.0601 | 0.93 | 2500 | 1.0669 |
78
+ | 1.0849 | 0.97 | 2600 | 1.0667 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.28.0.dev0
84
+ - Pytorch 2.0.0+cu117
85
+ - Datasets 2.10.1
86
+ - Tokenizers 0.13.2