File size: 2,890 Bytes
4bedb9d 8504816 4bedb9d 8504816 4bedb9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: other
tags:
- generated_from_trainer
datasets:
- HiTZ/alpaca_mt
model-index:
- name: alpaca-lora-30b-en-pt-es-ca-eu-gl-at
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# alpaca-lora-30b-en-pt-es-ca-eu-gl-at
This model is a fine-tuned version of [decapoda-research/llama-30b-hf](https://huggingface.co/decapoda-research/llama-30b-hf) on the HiTZ/alpaca_mt ['en', 'pt', 'es', 'ca', 'eu', 'gl', 'at'] dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9088
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 21
- total_train_batch_size: 126
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1695 | 0.04 | 100 | 1.1716 |
| 1.1211 | 0.07 | 200 | 1.0964 |
| 1.0591 | 0.11 | 300 | 1.0590 |
| 1.0234 | 0.14 | 400 | 1.0341 |
| 1.0345 | 0.18 | 500 | 1.0165 |
| 0.9932 | 0.22 | 600 | 1.0024 |
| 0.9948 | 0.25 | 700 | 0.9895 |
| 1.01 | 0.29 | 800 | 0.9794 |
| 0.9488 | 0.32 | 900 | 0.9708 |
| 0.9518 | 0.36 | 1000 | 0.9627 |
| 0.9463 | 0.4 | 1100 | 0.9557 |
| 0.956 | 0.43 | 1200 | 0.9498 |
| 0.9521 | 0.47 | 1300 | 0.9437 |
| 0.9345 | 0.51 | 1400 | 0.9385 |
| 0.9469 | 0.54 | 1500 | 0.9337 |
| 0.9466 | 0.58 | 1600 | 0.9297 |
| 0.9403 | 0.61 | 1700 | 0.9257 |
| 0.9179 | 0.65 | 1800 | 0.9219 |
| 0.9468 | 0.69 | 1900 | 0.9190 |
| 0.9173 | 0.72 | 2000 | 0.9163 |
| 0.9172 | 0.76 | 2100 | 0.9142 |
| 0.9351 | 0.79 | 2200 | 0.9124 |
| 0.9238 | 0.83 | 2300 | 0.9110 |
| 0.9057 | 0.87 | 2400 | 0.9099 |
| 0.9309 | 0.9 | 2500 | 0.9093 |
| 0.8893 | 0.94 | 2600 | 0.9090 |
| 0.9095 | 0.97 | 2700 | 0.9088 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2
|