File size: 15,794 Bytes
903ebdd
61bdae6
 
 
 
 
903ebdd
61bdae6
 
903ebdd
953b9e7
 
3b67f5f
 
 
057b246
cccb6a1
057b246
 
 
 
 
 
4348624
0938a64
057b246
 
 
 
7e68f03
ffa6c72
3b67f5f
4348624
 
1aae856
7e68f03
 
 
 
 
 
 
 
 
1aae856
 
 
 
 
 
4348624
 
aff1c2e
4348624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61bdae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953b9e7
ffa6c72
 
953b9e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
903ebdd
953b9e7
 
 
 
 
 
85ffe8f
953b9e7
 
903ebdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b67f5f
 
 
 
 
 
 
 
 
 
057b246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4027ab4
0477ff7
057b246
 
 
 
4027ab4
057b246
4027ab4
057b246
4027ab4
057b246
 
4027ab4
 
 
 
 
057b246
4027ab4
057b246
 
 
 
 
4027ab4
 
 
057b246
 
4027ab4
 
057b246
0938a64
 
 
 
 
 
 
 
 
 
 
 
953b9e7
fc9714e
953b9e7
a20f4f4
953b9e7
 
b609293
 
 
 
 
 
 
 
 
 
 
 
 
7e68f03
e01df81
953b9e7
92f5e57
4348624
488707a
4348624
b609293
4348624
 
e01df81
953b9e7
ab6112a
4348624
b3499f0
 
 
a4338e4
9de6561
 
 
 
 
 
 
 
3b67f5f
a4338e4
3b67f5f
 
 
 
 
082354e
2321e68
 
 
 
 
 
 
 
 
 
 
488707a
2321e68
953b9e7
d325258
 
 
488707a
f34bbe0
ab6112a
 
 
 
2321e68
 
 
 
 
 
 
903ebdd
d9d328f
7e68f03
 
 
 
057b246
7e68f03
b3499f0
61bdae6
 
76242c8
ffa6c72
4d8d235
61bdae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8d235
 
 
61bdae6
 
 
 
b3499f0
 
61bdae6
 
ffa6c72
b3499f0
61bdae6
 
 
903ebdd
0938a64
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
import re
import random
from scipy.io.wavfile import write
from scipy.io.wavfile import read
import numpy as np
import gradio as gr
import yt_dlp
import subprocess
from pydub import AudioSegment
from audio_separator.separator import Separator
from lib.infer import infer_audio
import edge_tts
import tempfile
import anyio
from pathlib import Path
from lib.language_tts import language_dict
import os
import zipfile
import shutil
import urllib.request
import gdown
import subprocess
import time
from argparse import ArgumentParser
main_dir = Path().resolve()
print(main_dir)

os.chdir(main_dir)
models_dir = main_dir / "rvc_models"
audio_separat_dir = main_dir / "audio_input"

AUDIO_DIR = main_dir / 'audio_input'


# Function to list all folders in the models directory
def get_folders():
    if models_dir.exists() and models_dir.is_dir():
        return [folder.name for folder in models_dir.iterdir() if folder.is_dir()]
    return []

# Function to refresh and return the list of folders
def refresh_folders():
    return gr.Dropdown.update(choices=get_folders())






# Function to get the list of audio files in the specified directory
def get_audio_files():
    if not os.path.exists(AUDIO_DIR):
        os.makedirs(AUDIO_DIR)
    # List all supported audio file formats
    return [f for f in os.listdir(AUDIO_DIR) if f.lower().endswith(('.mp3', '.wav', '.flac', '.ogg', '.aac'))]

# Function to return the full path of audio files for playback
def load_audio_files():
    audio_files = get_audio_files()
    return [os.path.join(AUDIO_DIR, f) for f in audio_files]

# Refresh function to update the list of files
def refresh_audio_list():
    audio_files = load_audio_files()
    return gr.update(choices=audio_files)

# Function to play selected audio file
def play_audio(file_path):
    return file_path





def download_audio(url):
    ydl_opts = {
        'format': 'bestaudio/best',
        'outtmpl': 'ytdl/%(title)s.%(ext)s',
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'wav',
            'preferredquality': '192',
        }],
    }

    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        info_dict = ydl.extract_info(url, download=True)
        file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
        sample_rate, audio_data = read(file_path)
        audio_array = np.asarray(audio_data, dtype=np.int16)

        return sample_rate, audio_array




# Define a function to handle the entire separation process
def separate_audio(input_audio, model_voc_inst, model_deecho, model_back_voc):
    output_dir = audio_separat_dir
    separator = Separator(output_dir=output_dir)

    # Define output files
    vocals = os.path.join(output_dir, 'Vocals.wav')
    instrumental = os.path.join(output_dir, 'Instrumental.wav')
    vocals_reverb = os.path.join(output_dir, 'Vocals (Reverb).wav')
    vocals_no_reverb = os.path.join(output_dir, 'Vocals (No Reverb).wav')
    lead_vocals = os.path.join(output_dir, 'Lead Vocals.wav')
    backing_vocals = os.path.join(output_dir, 'Backing Vocals.wav')

    # Splitting a track into Vocal and Instrumental
    separator.load_model(model_filename=model_voc_inst)
    voc_inst = separator.separate(input_audio)
    os.rename(os.path.join(output_dir, voc_inst[0]), instrumental)  # Rename to “Instrumental.wav”
    os.rename(os.path.join(output_dir, voc_inst[1]), vocals)        # Rename to “Vocals.wav”

    # Applying DeEcho-DeReverb to Vocals
    separator.load_model(model_filename=model_deecho)
    voc_no_reverb = separator.separate(vocals)
    os.rename(os.path.join(output_dir, voc_no_reverb[0]), vocals_no_reverb)  # Rename to “Vocals (No Reverb).wav”
    os.rename(os.path.join(output_dir, voc_no_reverb[1]), vocals_reverb)     # Rename to “Vocals (Reverb).wav”

    # Separating Back Vocals from Main Vocals
    separator.load_model(model_filename=model_back_voc)
    backing_voc = separator.separate(vocals_no_reverb)
    os.rename(os.path.join(output_dir, backing_voc[0]), backing_vocals)  # Rename to “Backing Vocals.wav”
    os.rename(os.path.join(output_dir, backing_voc[1]), lead_vocals)     # Rename to “Lead Vocals.wav”

    return "separation done..."

# Main function to process audio (Inference)
def process_audio(MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE, 
                  FILTER_RADIUS, RMS_MIX_RATE, PROTECT, SPLIT_INFER, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP, 
                  KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio=None):

    # If no sound path is given, use the uploaded file
    if not SOUND_PATH and upload_audio is not None:
        SOUND_PATH = os.path.join("uploaded_audio", upload_audio.name)
        with open(SOUND_PATH, "wb") as f:
            f.write(upload_audio.read())
    
    # Check if a model name is provided
    if not MODEL_NAME:
        return "Please provide a model name."

    # Run the inference
    os.system("chmod +x stftpitchshift")
    inferred_audio = infer_audio(
        MODEL_NAME,
        SOUND_PATH,
        F0_CHANGE,
        F0_METHOD,
        MIN_PITCH,
        MAX_PITCH,
        CREPE_HOP_LENGTH,
        INDEX_RATE,
        FILTER_RADIUS,
        RMS_MIX_RATE,
        PROTECT,
        SPLIT_INFER,
        MIN_SILENCE,
        SILENCE_THRESHOLD,
        SEEK_STEP,
        KEEP_SILENCE,
        FORMANT_SHIFT,
        QUEFRENCY,
        TIMBRE,
        F0_AUTOTUNE,
        OUTPUT_FORMAT
    )
    
    return inferred_audio


async def text_to_speech_edge(text, language_code):
    voice = language_dict.get(language_code, "default_voice")
    communicate = edge_tts.Communicate(text, voice)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    return tmp_path




def extract_zip(extraction_folder, zip_name):
    os.makedirs(extraction_folder)
    with zipfile.ZipFile(zip_name, 'r') as zip_ref:
        zip_ref.extractall(extraction_folder)
    os.remove(zip_name)

    index_filepath, model_filepath = None, None
    for root, dirs, files in os.walk(extraction_folder):
        for name in files:
            if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
                index_filepath = os.path.join(root, name)

            if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
                model_filepath = os.path.join(root, name)

    if not model_filepath:
        raise Exception(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')

    # move model and index file to extraction folder
    os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
    if index_filepath:
        os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))

    # remove any unnecessary nested folders
    for filepath in os.listdir(extraction_folder):
        if os.path.isdir(os.path.join(extraction_folder, filepath)):
            shutil.rmtree(os.path.join(extraction_folder, filepath))


def download_online_model(url, dir_name, models_dir='./rvc_models'):
    try:
        print(f'[~] Downloading voice model with name {dir_name}...')
        zip_name = url.split('/')[-1]
        extraction_folder = os.path.join(models_dir, dir_name)
        
        if os.path.exists(extraction_folder):
            return f'[!] Voice model directory {dir_name} already exists! Choose a different name for your voice model.'

        # Download from pixeldrain
        if 'pixeldrain.com' in url:
            url = f'https://pixeldrain.com/api/file/{zip_name}'
            urllib.request.urlretrieve(url, zip_name)
        # Download from Google Drive
        elif 'drive.google.com' in url:
            zip_name = dir_name + ".zip"
            gdown.download(url, output=zip_name, use_cookies=True, quiet=True)
        else:
            # General URL download
            urllib.request.urlretrieve(url, zip_name)

        print(f'[~] Extracting zip file...')
        extract_zip(extraction_folder, zip_name)
        print(f'[+] {dir_name} Model successfully downloaded!')
        
        # Return success message after successful download
        return f"[+] {dir_name} Model successfully downloaded!"

    except Exception as e:
        # Return the error message instead of raising an exception
        return f'[!] Error: {str(e)}'


if __name__ == '__main__':
    parser = ArgumentParser(description='Generate a AI song in the song_output/id directory.', add_help=True)
    parser.add_argument("--share", action="store_true", dest="share_enabled", default=False, help="Enable sharing")
    parser.add_argument("--listen", action="store_true", default=False, help="Make the UI reachable from your local network.")
    parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
    parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
    args = parser.parse_args()




# Gradio Blocks Interface with Tabs
with gr.Blocks(title="Hex RVC", theme=gr.themes.Base(primary_hue="red", secondary_hue="pink")) as app:
    gr.Markdown("# Hex RVC")
    gr.Markdown(" join [AIHub](https://discord.gg/aihub) to get the rvc model!")
    
    with gr.Tab("Inference"):
        with gr.Row():
            MODEL_NAME = gr.Dropdown(
                label="Select a Model",
                choices=get_folders(),
                interactive=True,
                elem_id="model_folder"
            )
            SOUND_PATH = gr.Dropdown(
                choices=load_audio_files(),
                label="Select an audio file",
                interactive=True,
                value=None,
            )
        # Button to refresh the list of folders
        
        with gr.Row():
        #     = gr.Textbox(label="Model Name", placeholder="Enter model name")
        #    SOUND_PATH = gr.Textbox(label="Audio Path (Optional)", placeholder="Leave blank to upload audio")
            upload_audio = gr.Audio(label="Upload Audio", type='filepath', visible=False)

        



        
        

        with gr.Accordion("Conversion Settings"):
            with gr.Row():
                F0_CHANGE = gr.Number(label="Pitch Change (semitones)", value=0)
                F0_METHOD = gr.Dropdown(choices=["crepe", "harvest", "mangio-crepe", "rmvpe", "fcpe", "hybrid[rmvpe+fcpe]"], label="F0 Method", value="fcpe")
            with gr.Row():
                MIN_PITCH = gr.Textbox(label="Min Pitch", value="50")
                MAX_PITCH = gr.Textbox(label="Max Pitch", value="1100")
                CREPE_HOP_LENGTH = gr.Number(label="Crepe Hop Length", value=120)
                INDEX_RATE = gr.Slider(label="Index Rate", minimum=0, maximum=1, value=0.75)
                FILTER_RADIUS = gr.Number(label="Filter Radius", value=3)
                RMS_MIX_RATE = gr.Slider(label="RMS Mix Rate", minimum=0, maximum=1, value=0.25)
                PROTECT = gr.Slider(label="Protect", minimum=0, maximum=1, value=0.33)

        with gr.Accordion("Hex TTS", open=False):
            input_text = gr.Textbox(lines=5, label="Input Text")
            #output_text = gr.Textbox(label="Output Text")
            #output_audio = gr.Audio(type="filepath", label="Exported Audio")
            language = gr.Dropdown(choices=list(language_dict.keys()), label="Choose the Voice Model")
            tts_convert = gr.Button("Convert")
            tts_convert.click(fn=text_to_speech_edge, inputs=[input_text, language], outputs=[upload_audio])
        with gr.Accordion("Advanced Settings", open=False):
            SPLIT_INFER = gr.Checkbox(label="Enable Split Inference", value=False)
            MIN_SILENCE = gr.Number(label="Min Silence (ms)", value=500)
            SILENCE_THRESHOLD = gr.Number(label="Silence Threshold (dBFS)", value=-50)
            SEEK_STEP = gr.Slider(label="Seek Step (ms)", minimum=1, maximum=10, value=1)
            KEEP_SILENCE = gr.Number(label="Keep Silence (ms)", value=200)
            FORMANT_SHIFT = gr.Checkbox(label="Enable Formant Shift", value=False)
            QUEFRENCY = gr.Number(label="Quefrency", value=0)
            TIMBRE = gr.Number(label="Timbre", value=1)
            F0_AUTOTUNE = gr.Checkbox(label="Enable F0 Autotune", value=False)
            OUTPUT_FORMAT = gr.Dropdown(choices=["wav", "flac", "mp3"], label="Output Format", value="wav")

        output_audio = gr.Audio(label="Generated Audio", type='filepath')

        with gr.Row():
            refresh_btn = gr.Button("Refresh")
            run_button = gr.Button("Convert")
        
        #ref_btn.click(update_models_list, None, outputs=MODEL_NAME)
        refresh_btn.click(
            lambda: (refresh_audio_list(), refresh_folders()), 
            outputs=[SOUND_PATH, MODEL_NAME]
        )
        run_button.click(
            process_audio, 
            inputs=[MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE, 
                    FILTER_RADIUS, RMS_MIX_RATE, PROTECT, SPLIT_INFER, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP, 
                    KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio], 
            outputs=output_audio
        )

    with gr.Tab("Download RVC Model"):
        with gr.Row():
            url = gr.Textbox(label="Your model URL")
            dirname = gr.Textbox(label="Your Model name")
        outout_pah = gr.Textbox(label="output download", interactive=False)
        button_model = gr.Button("Download model")
        
        button_model.click(fn=download_online_model, inputs=[url, dirname], outputs=[outout_pah])
    with gr.Tab("Audio Separation"):
        with gr.Row():
            input_audio = gr.Audio(type="filepath", label="Upload Audio File")
            
        with gr.Row():
            with gr.Accordion("Separation by Link", open = False):
                with gr.Row():
                    roformer_link = gr.Textbox(
                    label = "Link",
                    placeholder = "Paste the link here",
                    interactive = True
                )
                with gr.Row():
                   gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
                with gr.Row():
                    roformer_download_button = gr.Button(
                    "Download!",
                    variant = "primary"
                )

            roformer_download_button.click(download_audio, [roformer_link], [input_audio])
        
        with gr.Row():
            model_voc_inst = gr.Textbox(value='model_bs_roformer_ep_317_sdr_12.9755.ckpt', label="Vocal & Instrumental Model", visible=False)
            model_deecho = gr.Textbox(value='UVR-DeEcho-DeReverb.pth', label="DeEcho-DeReverb Model", visible=False)
            model_back_voc = gr.Textbox(value='mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt', label="Backing Vocals Model", visible=False)
        
        separate_button = gr.Button("Separate Audio")
        
        with gr.Row():
            outout_paht = gr.Textbox(label="output download", interactive=False)
      
        separate_button.click(
            separate_audio,
            inputs=[input_audio, model_voc_inst, model_deecho, model_back_voc],
            outputs=[outout_paht]
        )


# Launch the Gradio app
app.launch(
    share=args.share_enabled,
    server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
    server_port=args.listen_port,
)