File size: 15,794 Bytes
903ebdd 61bdae6 903ebdd 61bdae6 903ebdd 953b9e7 3b67f5f 057b246 cccb6a1 057b246 4348624 0938a64 057b246 7e68f03 ffa6c72 3b67f5f 4348624 1aae856 7e68f03 1aae856 4348624 aff1c2e 4348624 61bdae6 953b9e7 ffa6c72 953b9e7 903ebdd 953b9e7 85ffe8f 953b9e7 903ebdd 3b67f5f 057b246 4027ab4 0477ff7 057b246 4027ab4 057b246 4027ab4 057b246 4027ab4 057b246 4027ab4 057b246 4027ab4 057b246 4027ab4 057b246 4027ab4 057b246 0938a64 953b9e7 fc9714e 953b9e7 a20f4f4 953b9e7 b609293 7e68f03 e01df81 953b9e7 92f5e57 4348624 488707a 4348624 b609293 4348624 e01df81 953b9e7 ab6112a 4348624 b3499f0 a4338e4 9de6561 3b67f5f a4338e4 3b67f5f 082354e 2321e68 488707a 2321e68 953b9e7 d325258 488707a f34bbe0 ab6112a 2321e68 903ebdd d9d328f 7e68f03 057b246 7e68f03 b3499f0 61bdae6 76242c8 ffa6c72 4d8d235 61bdae6 4d8d235 61bdae6 b3499f0 61bdae6 ffa6c72 b3499f0 61bdae6 903ebdd 0938a64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import os
import re
import random
from scipy.io.wavfile import write
from scipy.io.wavfile import read
import numpy as np
import gradio as gr
import yt_dlp
import subprocess
from pydub import AudioSegment
from audio_separator.separator import Separator
from lib.infer import infer_audio
import edge_tts
import tempfile
import anyio
from pathlib import Path
from lib.language_tts import language_dict
import os
import zipfile
import shutil
import urllib.request
import gdown
import subprocess
import time
from argparse import ArgumentParser
main_dir = Path().resolve()
print(main_dir)
os.chdir(main_dir)
models_dir = main_dir / "rvc_models"
audio_separat_dir = main_dir / "audio_input"
AUDIO_DIR = main_dir / 'audio_input'
# Function to list all folders in the models directory
def get_folders():
if models_dir.exists() and models_dir.is_dir():
return [folder.name for folder in models_dir.iterdir() if folder.is_dir()]
return []
# Function to refresh and return the list of folders
def refresh_folders():
return gr.Dropdown.update(choices=get_folders())
# Function to get the list of audio files in the specified directory
def get_audio_files():
if not os.path.exists(AUDIO_DIR):
os.makedirs(AUDIO_DIR)
# List all supported audio file formats
return [f for f in os.listdir(AUDIO_DIR) if f.lower().endswith(('.mp3', '.wav', '.flac', '.ogg', '.aac'))]
# Function to return the full path of audio files for playback
def load_audio_files():
audio_files = get_audio_files()
return [os.path.join(AUDIO_DIR, f) for f in audio_files]
# Refresh function to update the list of files
def refresh_audio_list():
audio_files = load_audio_files()
return gr.update(choices=audio_files)
# Function to play selected audio file
def play_audio(file_path):
return file_path
def download_audio(url):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'ytdl/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
sample_rate, audio_data = read(file_path)
audio_array = np.asarray(audio_data, dtype=np.int16)
return sample_rate, audio_array
# Define a function to handle the entire separation process
def separate_audio(input_audio, model_voc_inst, model_deecho, model_back_voc):
output_dir = audio_separat_dir
separator = Separator(output_dir=output_dir)
# Define output files
vocals = os.path.join(output_dir, 'Vocals.wav')
instrumental = os.path.join(output_dir, 'Instrumental.wav')
vocals_reverb = os.path.join(output_dir, 'Vocals (Reverb).wav')
vocals_no_reverb = os.path.join(output_dir, 'Vocals (No Reverb).wav')
lead_vocals = os.path.join(output_dir, 'Lead Vocals.wav')
backing_vocals = os.path.join(output_dir, 'Backing Vocals.wav')
# Splitting a track into Vocal and Instrumental
separator.load_model(model_filename=model_voc_inst)
voc_inst = separator.separate(input_audio)
os.rename(os.path.join(output_dir, voc_inst[0]), instrumental) # Rename to “Instrumental.wav”
os.rename(os.path.join(output_dir, voc_inst[1]), vocals) # Rename to “Vocals.wav”
# Applying DeEcho-DeReverb to Vocals
separator.load_model(model_filename=model_deecho)
voc_no_reverb = separator.separate(vocals)
os.rename(os.path.join(output_dir, voc_no_reverb[0]), vocals_no_reverb) # Rename to “Vocals (No Reverb).wav”
os.rename(os.path.join(output_dir, voc_no_reverb[1]), vocals_reverb) # Rename to “Vocals (Reverb).wav”
# Separating Back Vocals from Main Vocals
separator.load_model(model_filename=model_back_voc)
backing_voc = separator.separate(vocals_no_reverb)
os.rename(os.path.join(output_dir, backing_voc[0]), backing_vocals) # Rename to “Backing Vocals.wav”
os.rename(os.path.join(output_dir, backing_voc[1]), lead_vocals) # Rename to “Lead Vocals.wav”
return "separation done..."
# Main function to process audio (Inference)
def process_audio(MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE,
FILTER_RADIUS, RMS_MIX_RATE, PROTECT, SPLIT_INFER, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP,
KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio=None):
# If no sound path is given, use the uploaded file
if not SOUND_PATH and upload_audio is not None:
SOUND_PATH = os.path.join("uploaded_audio", upload_audio.name)
with open(SOUND_PATH, "wb") as f:
f.write(upload_audio.read())
# Check if a model name is provided
if not MODEL_NAME:
return "Please provide a model name."
# Run the inference
os.system("chmod +x stftpitchshift")
inferred_audio = infer_audio(
MODEL_NAME,
SOUND_PATH,
F0_CHANGE,
F0_METHOD,
MIN_PITCH,
MAX_PITCH,
CREPE_HOP_LENGTH,
INDEX_RATE,
FILTER_RADIUS,
RMS_MIX_RATE,
PROTECT,
SPLIT_INFER,
MIN_SILENCE,
SILENCE_THRESHOLD,
SEEK_STEP,
KEEP_SILENCE,
FORMANT_SHIFT,
QUEFRENCY,
TIMBRE,
F0_AUTOTUNE,
OUTPUT_FORMAT
)
return inferred_audio
async def text_to_speech_edge(text, language_code):
voice = language_dict.get(language_code, "default_voice")
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
def extract_zip(extraction_folder, zip_name):
os.makedirs(extraction_folder)
with zipfile.ZipFile(zip_name, 'r') as zip_ref:
zip_ref.extractall(extraction_folder)
os.remove(zip_name)
index_filepath, model_filepath = None, None
for root, dirs, files in os.walk(extraction_folder):
for name in files:
if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
index_filepath = os.path.join(root, name)
if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
model_filepath = os.path.join(root, name)
if not model_filepath:
raise Exception(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
# move model and index file to extraction folder
os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
if index_filepath:
os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
# remove any unnecessary nested folders
for filepath in os.listdir(extraction_folder):
if os.path.isdir(os.path.join(extraction_folder, filepath)):
shutil.rmtree(os.path.join(extraction_folder, filepath))
def download_online_model(url, dir_name, models_dir='./rvc_models'):
try:
print(f'[~] Downloading voice model with name {dir_name}...')
zip_name = url.split('/')[-1]
extraction_folder = os.path.join(models_dir, dir_name)
if os.path.exists(extraction_folder):
return f'[!] Voice model directory {dir_name} already exists! Choose a different name for your voice model.'
# Download from pixeldrain
if 'pixeldrain.com' in url:
url = f'https://pixeldrain.com/api/file/{zip_name}'
urllib.request.urlretrieve(url, zip_name)
# Download from Google Drive
elif 'drive.google.com' in url:
zip_name = dir_name + ".zip"
gdown.download(url, output=zip_name, use_cookies=True, quiet=True)
else:
# General URL download
urllib.request.urlretrieve(url, zip_name)
print(f'[~] Extracting zip file...')
extract_zip(extraction_folder, zip_name)
print(f'[+] {dir_name} Model successfully downloaded!')
# Return success message after successful download
return f"[+] {dir_name} Model successfully downloaded!"
except Exception as e:
# Return the error message instead of raising an exception
return f'[!] Error: {str(e)}'
if __name__ == '__main__':
parser = ArgumentParser(description='Generate a AI song in the song_output/id directory.', add_help=True)
parser.add_argument("--share", action="store_true", dest="share_enabled", default=False, help="Enable sharing")
parser.add_argument("--listen", action="store_true", default=False, help="Make the UI reachable from your local network.")
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
args = parser.parse_args()
# Gradio Blocks Interface with Tabs
with gr.Blocks(title="Hex RVC", theme=gr.themes.Base(primary_hue="red", secondary_hue="pink")) as app:
gr.Markdown("# Hex RVC")
gr.Markdown(" join [AIHub](https://discord.gg/aihub) to get the rvc model!")
with gr.Tab("Inference"):
with gr.Row():
MODEL_NAME = gr.Dropdown(
label="Select a Model",
choices=get_folders(),
interactive=True,
elem_id="model_folder"
)
SOUND_PATH = gr.Dropdown(
choices=load_audio_files(),
label="Select an audio file",
interactive=True,
value=None,
)
# Button to refresh the list of folders
with gr.Row():
# = gr.Textbox(label="Model Name", placeholder="Enter model name")
# SOUND_PATH = gr.Textbox(label="Audio Path (Optional)", placeholder="Leave blank to upload audio")
upload_audio = gr.Audio(label="Upload Audio", type='filepath', visible=False)
with gr.Accordion("Conversion Settings"):
with gr.Row():
F0_CHANGE = gr.Number(label="Pitch Change (semitones)", value=0)
F0_METHOD = gr.Dropdown(choices=["crepe", "harvest", "mangio-crepe", "rmvpe", "fcpe", "hybrid[rmvpe+fcpe]"], label="F0 Method", value="fcpe")
with gr.Row():
MIN_PITCH = gr.Textbox(label="Min Pitch", value="50")
MAX_PITCH = gr.Textbox(label="Max Pitch", value="1100")
CREPE_HOP_LENGTH = gr.Number(label="Crepe Hop Length", value=120)
INDEX_RATE = gr.Slider(label="Index Rate", minimum=0, maximum=1, value=0.75)
FILTER_RADIUS = gr.Number(label="Filter Radius", value=3)
RMS_MIX_RATE = gr.Slider(label="RMS Mix Rate", minimum=0, maximum=1, value=0.25)
PROTECT = gr.Slider(label="Protect", minimum=0, maximum=1, value=0.33)
with gr.Accordion("Hex TTS", open=False):
input_text = gr.Textbox(lines=5, label="Input Text")
#output_text = gr.Textbox(label="Output Text")
#output_audio = gr.Audio(type="filepath", label="Exported Audio")
language = gr.Dropdown(choices=list(language_dict.keys()), label="Choose the Voice Model")
tts_convert = gr.Button("Convert")
tts_convert.click(fn=text_to_speech_edge, inputs=[input_text, language], outputs=[upload_audio])
with gr.Accordion("Advanced Settings", open=False):
SPLIT_INFER = gr.Checkbox(label="Enable Split Inference", value=False)
MIN_SILENCE = gr.Number(label="Min Silence (ms)", value=500)
SILENCE_THRESHOLD = gr.Number(label="Silence Threshold (dBFS)", value=-50)
SEEK_STEP = gr.Slider(label="Seek Step (ms)", minimum=1, maximum=10, value=1)
KEEP_SILENCE = gr.Number(label="Keep Silence (ms)", value=200)
FORMANT_SHIFT = gr.Checkbox(label="Enable Formant Shift", value=False)
QUEFRENCY = gr.Number(label="Quefrency", value=0)
TIMBRE = gr.Number(label="Timbre", value=1)
F0_AUTOTUNE = gr.Checkbox(label="Enable F0 Autotune", value=False)
OUTPUT_FORMAT = gr.Dropdown(choices=["wav", "flac", "mp3"], label="Output Format", value="wav")
output_audio = gr.Audio(label="Generated Audio", type='filepath')
with gr.Row():
refresh_btn = gr.Button("Refresh")
run_button = gr.Button("Convert")
#ref_btn.click(update_models_list, None, outputs=MODEL_NAME)
refresh_btn.click(
lambda: (refresh_audio_list(), refresh_folders()),
outputs=[SOUND_PATH, MODEL_NAME]
)
run_button.click(
process_audio,
inputs=[MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE,
FILTER_RADIUS, RMS_MIX_RATE, PROTECT, SPLIT_INFER, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP,
KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio],
outputs=output_audio
)
with gr.Tab("Download RVC Model"):
with gr.Row():
url = gr.Textbox(label="Your model URL")
dirname = gr.Textbox(label="Your Model name")
outout_pah = gr.Textbox(label="output download", interactive=False)
button_model = gr.Button("Download model")
button_model.click(fn=download_online_model, inputs=[url, dirname], outputs=[outout_pah])
with gr.Tab("Audio Separation"):
with gr.Row():
input_audio = gr.Audio(type="filepath", label="Upload Audio File")
with gr.Row():
with gr.Accordion("Separation by Link", open = False):
with gr.Row():
roformer_link = gr.Textbox(
label = "Link",
placeholder = "Paste the link here",
interactive = True
)
with gr.Row():
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
with gr.Row():
roformer_download_button = gr.Button(
"Download!",
variant = "primary"
)
roformer_download_button.click(download_audio, [roformer_link], [input_audio])
with gr.Row():
model_voc_inst = gr.Textbox(value='model_bs_roformer_ep_317_sdr_12.9755.ckpt', label="Vocal & Instrumental Model", visible=False)
model_deecho = gr.Textbox(value='UVR-DeEcho-DeReverb.pth', label="DeEcho-DeReverb Model", visible=False)
model_back_voc = gr.Textbox(value='mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt', label="Backing Vocals Model", visible=False)
separate_button = gr.Button("Separate Audio")
with gr.Row():
outout_paht = gr.Textbox(label="output download", interactive=False)
separate_button.click(
separate_audio,
inputs=[input_audio, model_voc_inst, model_deecho, model_back_voc],
outputs=[outout_paht]
)
# Launch the Gradio app
app.launch(
share=args.share_enabled,
server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
server_port=args.listen_port,
)
|