File size: 1,369 Bytes
810c26e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a1aa19
810c26e
 
 
 
 
 
 
 
 
3a1aa19
 
810c26e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---

# TRL Model

This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
 guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.

## Usage

To use this model for inference, first install the TRL library:

```bash
python -m pip install trl
```

You can then generate text as follows:

```python
from transformers import pipeline

generator = pipeline("text-generation", model="Hermi2023//mnt/hdd0/home/buwei/sample/tmp/tmp5nx4qcp3/Hermi2023/doc2query-ppo-msmarco-43520-121")
outputs = generator("Hello, my llama is cute")
```

If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:

```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead

tokenizer = AutoTokenizer.from_pretrained("Hermi2023//mnt/hdd0/home/buwei/sample/tmp/tmp5nx4qcp3/Hermi2023/doc2query-ppo-msmarco-43520-121")
model = AutoModelForCausalLMWithValueHead.from_pretrained("Hermi2023//mnt/hdd0/home/buwei/sample/tmp/tmp5nx4qcp3/Hermi2023/doc2query-ppo-msmarco-43520-121")

inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```