leaderboard-pr-bot's picture
Adding Evaluation Results
eb6d15f verified
|
raw
history blame
18.4 kB
metadata
license: apache-2.0
datasets:
  - databricks/databricks-dolly-15k
model-index:
  - name: Instruct_Mistral-7B-v0.1_Dolly15K
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 59.39
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 82.62
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 62.71
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 43.56
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 79.32
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 35.1
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
          name: Open LLM Leaderboard

Instruct_Mixtral-7B-v0.1_Dolly15K

Fine-tuned from Mixtral-7B-v0.1, used Dolly15k for the dataset. 90% for training, 10% validation. Trained for 2.0 epochs using Lora. Trained with 1024 context window.

Model Details

  • Trained by: trained by HenryJJ.
  • Model type: Instruct_Mixtral-7B-v0.1_Dolly15K is an auto-regressive language model based on the Llama 2 transformer architecture.
  • Language(s): English
  • License for Instruct_Mixtral-7B-v0.1_Dolly15K: apache-2.0 license

Prompting

Prompt Template With Context

Write a 10-line poem about a given topic

Input:

The topic is about racecars

Output:

Prompt Template Without Context

Who was the was the second president of the United States?

Output:

Training script:

Fully opensourced at: https://github.com/hengjiUSTC/learn-llm/blob/main/trl_finetune.py.

Latest results

These are the latest results from run 2024-01-04T13:27:32.660899(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):

{
    "all": {
        "acc": 0.6241143484289186,
        "acc_stderr": 0.032689663124831826,
        "acc_norm": 0.6299031400315822,
        "acc_norm_stderr": 0.033361474961048916,
        "mc1": 0.2802937576499388,
        "mc1_stderr": 0.015723139524608767,
        "mc2": 0.435601924823795,
        "mc2_stderr": 0.014179199089974604
    },
    "harness|arc:challenge|25": {
        "acc": 0.5571672354948806,
        "acc_stderr": 0.014515573873348906,
        "acc_norm": 0.5938566552901023,
        "acc_norm_stderr": 0.014351656690097862
    },
    "harness|hellaswag|10": {
        "acc": 0.6253734315873332,
        "acc_stderr": 0.004830371317841054,
        "acc_norm": 0.826229834694284,
        "acc_norm_stderr": 0.00378137335887
    },
    "harness|hendrycksTest-abstract_algebra|5": {
        "acc": 0.31,
        "acc_stderr": 0.04648231987117316,
        "acc_norm": 0.31,
        "acc_norm_stderr": 0.04648231987117316
    },
    "harness|hendrycksTest-anatomy|5": {
        "acc": 0.6148148148148148,
        "acc_stderr": 0.04203921040156279,
        "acc_norm": 0.6148148148148148,
        "acc_norm_stderr": 0.04203921040156279
    },
    "harness|hendrycksTest-astronomy|5": {
        "acc": 0.6513157894736842,
        "acc_stderr": 0.03878139888797611,
        "acc_norm": 0.6513157894736842,
        "acc_norm_stderr": 0.03878139888797611
    },
    "harness|hendrycksTest-business_ethics|5": {
        "acc": 0.57,
        "acc_stderr": 0.04975698519562428,
        "acc_norm": 0.57,
        "acc_norm_stderr": 0.04975698519562428
    },
    "harness|hendrycksTest-clinical_knowledge|5": {
        "acc": 0.660377358490566,
        "acc_stderr": 0.029146904747798328,
        "acc_norm": 0.660377358490566,
        "acc_norm_stderr": 0.029146904747798328
    },
    "harness|hendrycksTest-college_biology|5": {
        "acc": 0.7291666666666666,
        "acc_stderr": 0.03716177437566017,
        "acc_norm": 0.7291666666666666,
        "acc_norm_stderr": 0.03716177437566017
    },
    "harness|hendrycksTest-college_chemistry|5": {
        "acc": 0.46,
        "acc_stderr": 0.05009082659620332,
        "acc_norm": 0.46,
        "acc_norm_stderr": 0.05009082659620332
    },
    "harness|hendrycksTest-college_computer_science|5": {
        "acc": 0.54,
        "acc_stderr": 0.05009082659620333,
        "acc_norm": 0.54,
        "acc_norm_stderr": 0.05009082659620333
    },
    "harness|hendrycksTest-college_mathematics|5": {
        "acc": 0.38,
        "acc_stderr": 0.04878317312145632,
        "acc_norm": 0.38,
        "acc_norm_stderr": 0.04878317312145632
    },
    "harness|hendrycksTest-college_medicine|5": {
        "acc": 0.5838150289017341,
        "acc_stderr": 0.03758517775404947,
        "acc_norm": 0.5838150289017341,
        "acc_norm_stderr": 0.03758517775404947
    },
    "harness|hendrycksTest-college_physics|5": {
        "acc": 0.35294117647058826,
        "acc_stderr": 0.04755129616062946,
        "acc_norm": 0.35294117647058826,
        "acc_norm_stderr": 0.04755129616062946
    },
    "harness|hendrycksTest-computer_security|5": {
        "acc": 0.77,
        "acc_stderr": 0.04229525846816505,
        "acc_norm": 0.77,
        "acc_norm_stderr": 0.04229525846816505
    },
    "harness|hendrycksTest-conceptual_physics|5": {
        "acc": 0.5574468085106383,
        "acc_stderr": 0.032469569197899575,
        "acc_norm": 0.5574468085106383,
        "acc_norm_stderr": 0.032469569197899575
    },
    "harness|hendrycksTest-econometrics|5": {
        "acc": 0.5,
        "acc_stderr": 0.047036043419179864,
        "acc_norm": 0.5,
        "acc_norm_stderr": 0.047036043419179864
    },
    "harness|hendrycksTest-electrical_engineering|5": {
        "acc": 0.5724137931034483,
        "acc_stderr": 0.041227371113703316,
        "acc_norm": 0.5724137931034483,
        "acc_norm_stderr": 0.041227371113703316
    },
    "harness|hendrycksTest-elementary_mathematics|5": {
        "acc": 0.3994708994708995,
        "acc_stderr": 0.02522545028406788,
        "acc_norm": 0.3994708994708995,
        "acc_norm_stderr": 0.02522545028406788
    },
    "harness|hendrycksTest-formal_logic|5": {
        "acc": 0.3968253968253968,
        "acc_stderr": 0.04375888492727061,
        "acc_norm": 0.3968253968253968,
        "acc_norm_stderr": 0.04375888492727061
    },
    "harness|hendrycksTest-global_facts|5": {
        "acc": 0.35,
        "acc_stderr": 0.0479372485441102,
        "acc_norm": 0.35,
        "acc_norm_stderr": 0.0479372485441102
    },
    "harness|hendrycksTest-high_school_biology|5": {
        "acc": 0.7483870967741936,
        "acc_stderr": 0.024685979286239956,
        "acc_norm": 0.7483870967741936,
        "acc_norm_stderr": 0.024685979286239956
    },
    "harness|hendrycksTest-high_school_chemistry|5": {
        "acc": 0.5221674876847291,
        "acc_stderr": 0.03514528562175008,
        "acc_norm": 0.5221674876847291,
        "acc_norm_stderr": 0.03514528562175008
    },
    "harness|hendrycksTest-high_school_computer_science|5": {
        "acc": 0.67,
        "acc_stderr": 0.04725815626252607,
        "acc_norm": 0.67,
        "acc_norm_stderr": 0.04725815626252607
    },
    "harness|hendrycksTest-high_school_european_history|5": {
        "acc": 0.7636363636363637,
        "acc_stderr": 0.03317505930009182,
        "acc_norm": 0.7636363636363637,
        "acc_norm_stderr": 0.03317505930009182
    },
    "harness|hendrycksTest-high_school_geography|5": {
        "acc": 0.7525252525252525,
        "acc_stderr": 0.030746300742124498,
        "acc_norm": 0.7525252525252525,
        "acc_norm_stderr": 0.030746300742124498
    },
    "harness|hendrycksTest-high_school_government_and_politics|5": {
        "acc": 0.844559585492228,
        "acc_stderr": 0.026148483469153314,
        "acc_norm": 0.844559585492228,
        "acc_norm_stderr": 0.026148483469153314
    },
    "harness|hendrycksTest-high_school_macroeconomics|5": {
        "acc": 0.6205128205128205,
        "acc_stderr": 0.024603626924097417,
        "acc_norm": 0.6205128205128205,
        "acc_norm_stderr": 0.024603626924097417
    },
    "harness|hendrycksTest-high_school_mathematics|5": {
        "acc": 0.337037037037037,
        "acc_stderr": 0.028820884666253252,
        "acc_norm": 0.337037037037037,
        "acc_norm_stderr": 0.028820884666253252
    },
    "harness|hendrycksTest-high_school_microeconomics|5": {
        "acc": 0.6260504201680672,
        "acc_stderr": 0.031429466378837076,
        "acc_norm": 0.6260504201680672,
        "acc_norm_stderr": 0.031429466378837076
    },
    "harness|hendrycksTest-high_school_physics|5": {
        "acc": 0.33774834437086093,
        "acc_stderr": 0.03861557546255169,
        "acc_norm": 0.33774834437086093,
        "acc_norm_stderr": 0.03861557546255169
    },
    "harness|hendrycksTest-high_school_psychology|5": {
        "acc": 0.7944954128440367,
        "acc_stderr": 0.01732435232501601,
        "acc_norm": 0.7944954128440367,
        "acc_norm_stderr": 0.01732435232501601
    },
    "harness|hendrycksTest-high_school_statistics|5": {
        "acc": 0.5046296296296297,
        "acc_stderr": 0.03409825519163572,
        "acc_norm": 0.5046296296296297,
        "acc_norm_stderr": 0.03409825519163572
    },
    "harness|hendrycksTest-high_school_us_history|5": {
        "acc": 0.8137254901960784,
        "acc_stderr": 0.027325470966716312,
        "acc_norm": 0.8137254901960784,
        "acc_norm_stderr": 0.027325470966716312
    },
    "harness|hendrycksTest-high_school_world_history|5": {
        "acc": 0.7763713080168776,
        "acc_stderr": 0.027123298205229966,
        "acc_norm": 0.7763713080168776,
        "acc_norm_stderr": 0.027123298205229966
    },
    "harness|hendrycksTest-human_aging|5": {
        "acc": 0.6860986547085202,
        "acc_stderr": 0.031146796482972465,
        "acc_norm": 0.6860986547085202,
        "acc_norm_stderr": 0.031146796482972465
    },
    "harness|hendrycksTest-human_sexuality|5": {
        "acc": 0.7557251908396947,
        "acc_stderr": 0.037683359597287434,
        "acc_norm": 0.7557251908396947,
        "acc_norm_stderr": 0.037683359597287434
    },
    "harness|hendrycksTest-international_law|5": {
        "acc": 0.7851239669421488,
        "acc_stderr": 0.037494924487096966,
        "acc_norm": 0.7851239669421488,
        "acc_norm_stderr": 0.037494924487096966
    },
    "harness|hendrycksTest-jurisprudence|5": {
        "acc": 0.75,
        "acc_stderr": 0.04186091791394607,
        "acc_norm": 0.75,
        "acc_norm_stderr": 0.04186091791394607
    },
    "harness|hendrycksTest-logical_fallacies|5": {
        "acc": 0.7791411042944786,
        "acc_stderr": 0.03259177392742178,
        "acc_norm": 0.7791411042944786,
        "acc_norm_stderr": 0.03259177392742178
    },
    "harness|hendrycksTest-machine_learning|5": {
        "acc": 0.41964285714285715,
        "acc_stderr": 0.04684099321077106,
        "acc_norm": 0.41964285714285715,
        "acc_norm_stderr": 0.04684099321077106
    },
    "harness|hendrycksTest-management|5": {
        "acc": 0.7961165048543689,
        "acc_stderr": 0.039891398595317706,
        "acc_norm": 0.7961165048543689,
        "acc_norm_stderr": 0.039891398595317706
    },
    "harness|hendrycksTest-marketing|5": {
        "acc": 0.8589743589743589,
        "acc_stderr": 0.022801382534597528,
        "acc_norm": 0.8589743589743589,
        "acc_norm_stderr": 0.022801382534597528
    },
    "harness|hendrycksTest-medical_genetics|5": {
        "acc": 0.73,
        "acc_stderr": 0.044619604333847394,
        "acc_norm": 0.73,
        "acc_norm_stderr": 0.044619604333847394
    },
    "harness|hendrycksTest-miscellaneous|5": {
        "acc": 0.8135376756066411,
        "acc_stderr": 0.013927751372001501,
        "acc_norm": 0.8135376756066411,
        "acc_norm_stderr": 0.013927751372001501
    },
    "harness|hendrycksTest-moral_disputes|5": {
        "acc": 0.6994219653179191,
        "acc_stderr": 0.0246853168672578,
        "acc_norm": 0.6994219653179191,
        "acc_norm_stderr": 0.0246853168672578
    },
    "harness|hendrycksTest-moral_scenarios|5": {
        "acc": 0.4033519553072626,
        "acc_stderr": 0.01640712303219525,
        "acc_norm": 0.4033519553072626,
        "acc_norm_stderr": 0.01640712303219525
    },
    "harness|hendrycksTest-nutrition|5": {
        "acc": 0.7320261437908496,
        "acc_stderr": 0.02536060379624255,
        "acc_norm": 0.7320261437908496,
        "acc_norm_stderr": 0.02536060379624255
    },
    "harness|hendrycksTest-philosophy|5": {
        "acc": 0.7009646302250804,
        "acc_stderr": 0.02600330111788514,
        "acc_norm": 0.7009646302250804,
        "acc_norm_stderr": 0.02600330111788514
    },
    "harness|hendrycksTest-prehistory|5": {
        "acc": 0.7067901234567902,
        "acc_stderr": 0.025329888171900926,
        "acc_norm": 0.7067901234567902,
        "acc_norm_stderr": 0.025329888171900926
    },
    "harness|hendrycksTest-professional_accounting|5": {
        "acc": 0.49645390070921985,
        "acc_stderr": 0.02982674915328092,
        "acc_norm": 0.49645390070921985,
        "acc_norm_stderr": 0.02982674915328092
    },
    "harness|hendrycksTest-professional_law|5": {
        "acc": 0.44784876140808344,
        "acc_stderr": 0.01270058240476822,
        "acc_norm": 0.44784876140808344,
        "acc_norm_stderr": 0.01270058240476822
    },
    "harness|hendrycksTest-professional_medicine|5": {
        "acc": 0.6397058823529411,
        "acc_stderr": 0.029163128570670733,
        "acc_norm": 0.6397058823529411,
        "acc_norm_stderr": 0.029163128570670733
    },
    "harness|hendrycksTest-professional_psychology|5": {
        "acc": 0.6666666666666666,
        "acc_stderr": 0.019070985589687495,
        "acc_norm": 0.6666666666666666,
        "acc_norm_stderr": 0.019070985589687495
    },
    "harness|hendrycksTest-public_relations|5": {
        "acc": 0.6727272727272727,
        "acc_stderr": 0.0449429086625209,
        "acc_norm": 0.6727272727272727,
        "acc_norm_stderr": 0.0449429086625209
    },
    "harness|hendrycksTest-security_studies|5": {
        "acc": 0.7020408163265306,
        "acc_stderr": 0.029279567411065677,
        "acc_norm": 0.7020408163265306,
        "acc_norm_stderr": 0.029279567411065677
    },
    "harness|hendrycksTest-sociology|5": {
        "acc": 0.7960199004975125,
        "acc_stderr": 0.02849317624532607,
        "acc_norm": 0.7960199004975125,
        "acc_norm_stderr": 0.02849317624532607
    },
    "harness|hendrycksTest-us_foreign_policy|5": {
        "acc": 0.84,
        "acc_stderr": 0.03684529491774709,
        "acc_norm": 0.84,
        "acc_norm_stderr": 0.03684529491774709
    },
    "harness|hendrycksTest-virology|5": {
        "acc": 0.5542168674698795,
        "acc_stderr": 0.03869543323472101,
        "acc_norm": 0.5542168674698795,
        "acc_norm_stderr": 0.03869543323472101
    },
    "harness|hendrycksTest-world_religions|5": {
        "acc": 0.8011695906432749,
        "acc_stderr": 0.03061111655743253,
        "acc_norm": 0.8011695906432749,
        "acc_norm_stderr": 0.03061111655743253
    },
    "harness|truthfulqa:mc|0": {
        "mc1": 0.2802937576499388,
        "mc1_stderr": 0.015723139524608767,
        "mc2": 0.435601924823795,
        "mc2_stderr": 0.014179199089974604
    },
    "harness|winogrande|5": {
        "acc": 0.7932123125493291,
        "acc_stderr": 0.011382566829235805
    },
    "harness|gsm8k|5": {
        "acc": 0.3510235026535254,
        "acc_stderr": 0.01314694594139722
    }
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 60.45
AI2 Reasoning Challenge (25-Shot) 59.39
HellaSwag (10-Shot) 82.62
MMLU (5-Shot) 62.71
TruthfulQA (0-shot) 43.56
Winogrande (5-shot) 79.32
GSM8k (5-shot) 35.10