metadata
license: apache-2.0
datasets:
- databricks/databricks-dolly-15k
model-index:
- name: Instruct_Mistral-7B-v0.1_Dolly15K
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.39
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.62
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.71
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.56
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.32
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.1
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HenryJJ/Instruct_Mistral-7B-v0.1_Dolly15K
name: Open LLM Leaderboard
Instruct_Mixtral-7B-v0.1_Dolly15K
Fine-tuned from Mixtral-7B-v0.1, used Dolly15k for the dataset. 90% for training, 10% validation. Trained for 2.0 epochs using Lora. Trained with 1024 context window.
Model Details
- Trained by: trained by HenryJJ.
- Model type: Instruct_Mixtral-7B-v0.1_Dolly15K is an auto-regressive language model based on the Llama 2 transformer architecture.
- Language(s): English
- License for Instruct_Mixtral-7B-v0.1_Dolly15K: apache-2.0 license
Prompting
Prompt Template With Context
Write a 10-line poem about a given topic
Input:
The topic is about racecars
Output:
Prompt Template Without Context
Who was the was the second president of the United States?
Output:
Training script:
Fully opensourced at: https://github.com/hengjiUSTC/learn-llm/blob/main/trl_finetune.py.
Latest results
These are the latest results from run 2024-01-04T13:27:32.660899(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
{
"all": {
"acc": 0.6241143484289186,
"acc_stderr": 0.032689663124831826,
"acc_norm": 0.6299031400315822,
"acc_norm_stderr": 0.033361474961048916,
"mc1": 0.2802937576499388,
"mc1_stderr": 0.015723139524608767,
"mc2": 0.435601924823795,
"mc2_stderr": 0.014179199089974604
},
"harness|arc:challenge|25": {
"acc": 0.5571672354948806,
"acc_stderr": 0.014515573873348906,
"acc_norm": 0.5938566552901023,
"acc_norm_stderr": 0.014351656690097862
},
"harness|hellaswag|10": {
"acc": 0.6253734315873332,
"acc_stderr": 0.004830371317841054,
"acc_norm": 0.826229834694284,
"acc_norm_stderr": 0.00378137335887
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.31,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.31,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6148148148148148,
"acc_stderr": 0.04203921040156279,
"acc_norm": 0.6148148148148148,
"acc_norm_stderr": 0.04203921040156279
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.6513157894736842,
"acc_stderr": 0.03878139888797611,
"acc_norm": 0.6513157894736842,
"acc_norm_stderr": 0.03878139888797611
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.57,
"acc_stderr": 0.04975698519562428,
"acc_norm": 0.57,
"acc_norm_stderr": 0.04975698519562428
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.660377358490566,
"acc_stderr": 0.029146904747798328,
"acc_norm": 0.660377358490566,
"acc_norm_stderr": 0.029146904747798328
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7291666666666666,
"acc_stderr": 0.03716177437566017,
"acc_norm": 0.7291666666666666,
"acc_norm_stderr": 0.03716177437566017
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.46,
"acc_stderr": 0.05009082659620332,
"acc_norm": 0.46,
"acc_norm_stderr": 0.05009082659620332
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.54,
"acc_stderr": 0.05009082659620333,
"acc_norm": 0.54,
"acc_norm_stderr": 0.05009082659620333
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.38,
"acc_stderr": 0.04878317312145632,
"acc_norm": 0.38,
"acc_norm_stderr": 0.04878317312145632
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.5838150289017341,
"acc_stderr": 0.03758517775404947,
"acc_norm": 0.5838150289017341,
"acc_norm_stderr": 0.03758517775404947
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.35294117647058826,
"acc_stderr": 0.04755129616062946,
"acc_norm": 0.35294117647058826,
"acc_norm_stderr": 0.04755129616062946
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.77,
"acc_stderr": 0.04229525846816505,
"acc_norm": 0.77,
"acc_norm_stderr": 0.04229525846816505
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5574468085106383,
"acc_stderr": 0.032469569197899575,
"acc_norm": 0.5574468085106383,
"acc_norm_stderr": 0.032469569197899575
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.5,
"acc_stderr": 0.047036043419179864,
"acc_norm": 0.5,
"acc_norm_stderr": 0.047036043419179864
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5724137931034483,
"acc_stderr": 0.041227371113703316,
"acc_norm": 0.5724137931034483,
"acc_norm_stderr": 0.041227371113703316
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.3994708994708995,
"acc_stderr": 0.02522545028406788,
"acc_norm": 0.3994708994708995,
"acc_norm_stderr": 0.02522545028406788
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.3968253968253968,
"acc_stderr": 0.04375888492727061,
"acc_norm": 0.3968253968253968,
"acc_norm_stderr": 0.04375888492727061
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.35,
"acc_stderr": 0.0479372485441102,
"acc_norm": 0.35,
"acc_norm_stderr": 0.0479372485441102
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7483870967741936,
"acc_stderr": 0.024685979286239956,
"acc_norm": 0.7483870967741936,
"acc_norm_stderr": 0.024685979286239956
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.5221674876847291,
"acc_stderr": 0.03514528562175008,
"acc_norm": 0.5221674876847291,
"acc_norm_stderr": 0.03514528562175008
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.67,
"acc_stderr": 0.04725815626252607,
"acc_norm": 0.67,
"acc_norm_stderr": 0.04725815626252607
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7636363636363637,
"acc_stderr": 0.03317505930009182,
"acc_norm": 0.7636363636363637,
"acc_norm_stderr": 0.03317505930009182
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7525252525252525,
"acc_stderr": 0.030746300742124498,
"acc_norm": 0.7525252525252525,
"acc_norm_stderr": 0.030746300742124498
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.844559585492228,
"acc_stderr": 0.026148483469153314,
"acc_norm": 0.844559585492228,
"acc_norm_stderr": 0.026148483469153314
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6205128205128205,
"acc_stderr": 0.024603626924097417,
"acc_norm": 0.6205128205128205,
"acc_norm_stderr": 0.024603626924097417
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.337037037037037,
"acc_stderr": 0.028820884666253252,
"acc_norm": 0.337037037037037,
"acc_norm_stderr": 0.028820884666253252
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6260504201680672,
"acc_stderr": 0.031429466378837076,
"acc_norm": 0.6260504201680672,
"acc_norm_stderr": 0.031429466378837076
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.33774834437086093,
"acc_stderr": 0.03861557546255169,
"acc_norm": 0.33774834437086093,
"acc_norm_stderr": 0.03861557546255169
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.7944954128440367,
"acc_stderr": 0.01732435232501601,
"acc_norm": 0.7944954128440367,
"acc_norm_stderr": 0.01732435232501601
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5046296296296297,
"acc_stderr": 0.03409825519163572,
"acc_norm": 0.5046296296296297,
"acc_norm_stderr": 0.03409825519163572
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8137254901960784,
"acc_stderr": 0.027325470966716312,
"acc_norm": 0.8137254901960784,
"acc_norm_stderr": 0.027325470966716312
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.7763713080168776,
"acc_stderr": 0.027123298205229966,
"acc_norm": 0.7763713080168776,
"acc_norm_stderr": 0.027123298205229966
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.6860986547085202,
"acc_stderr": 0.031146796482972465,
"acc_norm": 0.6860986547085202,
"acc_norm_stderr": 0.031146796482972465
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7557251908396947,
"acc_stderr": 0.037683359597287434,
"acc_norm": 0.7557251908396947,
"acc_norm_stderr": 0.037683359597287434
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.7851239669421488,
"acc_stderr": 0.037494924487096966,
"acc_norm": 0.7851239669421488,
"acc_norm_stderr": 0.037494924487096966
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.75,
"acc_stderr": 0.04186091791394607,
"acc_norm": 0.75,
"acc_norm_stderr": 0.04186091791394607
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7791411042944786,
"acc_stderr": 0.03259177392742178,
"acc_norm": 0.7791411042944786,
"acc_norm_stderr": 0.03259177392742178
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.41964285714285715,
"acc_stderr": 0.04684099321077106,
"acc_norm": 0.41964285714285715,
"acc_norm_stderr": 0.04684099321077106
},
"harness|hendrycksTest-management|5": {
"acc": 0.7961165048543689,
"acc_stderr": 0.039891398595317706,
"acc_norm": 0.7961165048543689,
"acc_norm_stderr": 0.039891398595317706
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8589743589743589,
"acc_stderr": 0.022801382534597528,
"acc_norm": 0.8589743589743589,
"acc_norm_stderr": 0.022801382534597528
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.73,
"acc_stderr": 0.044619604333847394,
"acc_norm": 0.73,
"acc_norm_stderr": 0.044619604333847394
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8135376756066411,
"acc_stderr": 0.013927751372001501,
"acc_norm": 0.8135376756066411,
"acc_norm_stderr": 0.013927751372001501
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.6994219653179191,
"acc_stderr": 0.0246853168672578,
"acc_norm": 0.6994219653179191,
"acc_norm_stderr": 0.0246853168672578
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.4033519553072626,
"acc_stderr": 0.01640712303219525,
"acc_norm": 0.4033519553072626,
"acc_norm_stderr": 0.01640712303219525
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7320261437908496,
"acc_stderr": 0.02536060379624255,
"acc_norm": 0.7320261437908496,
"acc_norm_stderr": 0.02536060379624255
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7009646302250804,
"acc_stderr": 0.02600330111788514,
"acc_norm": 0.7009646302250804,
"acc_norm_stderr": 0.02600330111788514
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7067901234567902,
"acc_stderr": 0.025329888171900926,
"acc_norm": 0.7067901234567902,
"acc_norm_stderr": 0.025329888171900926
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.49645390070921985,
"acc_stderr": 0.02982674915328092,
"acc_norm": 0.49645390070921985,
"acc_norm_stderr": 0.02982674915328092
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.44784876140808344,
"acc_stderr": 0.01270058240476822,
"acc_norm": 0.44784876140808344,
"acc_norm_stderr": 0.01270058240476822
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6397058823529411,
"acc_stderr": 0.029163128570670733,
"acc_norm": 0.6397058823529411,
"acc_norm_stderr": 0.029163128570670733
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6666666666666666,
"acc_stderr": 0.019070985589687495,
"acc_norm": 0.6666666666666666,
"acc_norm_stderr": 0.019070985589687495
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6727272727272727,
"acc_stderr": 0.0449429086625209,
"acc_norm": 0.6727272727272727,
"acc_norm_stderr": 0.0449429086625209
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7020408163265306,
"acc_stderr": 0.029279567411065677,
"acc_norm": 0.7020408163265306,
"acc_norm_stderr": 0.029279567411065677
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.7960199004975125,
"acc_stderr": 0.02849317624532607,
"acc_norm": 0.7960199004975125,
"acc_norm_stderr": 0.02849317624532607
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.84,
"acc_stderr": 0.03684529491774709,
"acc_norm": 0.84,
"acc_norm_stderr": 0.03684529491774709
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5542168674698795,
"acc_stderr": 0.03869543323472101,
"acc_norm": 0.5542168674698795,
"acc_norm_stderr": 0.03869543323472101
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8011695906432749,
"acc_stderr": 0.03061111655743253,
"acc_norm": 0.8011695906432749,
"acc_norm_stderr": 0.03061111655743253
},
"harness|truthfulqa:mc|0": {
"mc1": 0.2802937576499388,
"mc1_stderr": 0.015723139524608767,
"mc2": 0.435601924823795,
"mc2_stderr": 0.014179199089974604
},
"harness|winogrande|5": {
"acc": 0.7932123125493291,
"acc_stderr": 0.011382566829235805
},
"harness|gsm8k|5": {
"acc": 0.3510235026535254,
"acc_stderr": 0.01314694594139722
}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 60.45 |
AI2 Reasoning Challenge (25-Shot) | 59.39 |
HellaSwag (10-Shot) | 82.62 |
MMLU (5-Shot) | 62.71 |
TruthfulQA (0-shot) | 43.56 |
Winogrande (5-shot) | 79.32 |
GSM8k (5-shot) | 35.10 |