File size: 13,905 Bytes
aba0e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import numpy as np
import torch
import os
from collections import OrderedDict
from torch.autograd import Variable
import util.util as util
from collections import OrderedDict
from torch.autograd import Variable
import itertools
import util.util as util
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks
import sys
class CycleGANModel(BaseModel):
def name(self):
return 'CycleGANModel'
def initialize(self, opt):
BaseModel.initialize(self, opt)
nb = opt.batchSize
size = opt.fineSize
self.opt = opt
self.input_A = self.Tensor(nb, opt.input_nc, size, size)
self.input_B = self.Tensor(nb, opt.output_nc, size, size)
if opt.vgg > 0:
self.vgg_loss = networks.PerceptualLoss()
self.vgg_loss.cuda()
self.vgg = networks.load_vgg16("./model")
self.vgg.eval()
for param in self.vgg.parameters():
param.requires_grad = False
# load/define networks
# The naming conversion is different from those used in the paper
# Code (paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
skip = True if opt.skip > 0 else False
self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, self.gpu_ids, skip=skip, opt=opt)
self.netG_B = networks.define_G(opt.output_nc, opt.input_nc,
opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, self.gpu_ids, skip=False, opt=opt)
if self.isTrain:
use_sigmoid = opt.no_lsgan
self.netD_A = networks.define_D(opt.output_nc, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids)
self.netD_B = networks.define_D(opt.input_nc, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids)
if not self.isTrain or opt.continue_train:
which_epoch = opt.which_epoch
self.load_network(self.netG_A, 'G_A', which_epoch)
self.load_network(self.netG_B, 'G_B', which_epoch)
if self.isTrain:
self.load_network(self.netD_A, 'D_A', which_epoch)
self.load_network(self.netD_B, 'D_B', which_epoch)
if self.isTrain:
self.old_lr = opt.lr
self.fake_A_pool = ImagePool(opt.pool_size)
self.fake_B_pool = ImagePool(opt.pool_size)
# define loss functions
if opt.use_wgan:
self.criterionGAN = networks.DiscLossWGANGP()
else:
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
self.criterionCycle = torch.nn.L1Loss()
self.criterionL1 = torch.nn.L1Loss()
self.criterionIdt = torch.nn.L1Loss()
# initialize optimizers
self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
print('---------- Networks initialized -------------')
networks.print_network(self.netG_A)
networks.print_network(self.netG_B)
if self.isTrain:
networks.print_network(self.netD_A)
networks.print_network(self.netD_B)
if opt.isTrain:
self.netG_A.train()
self.netG_B.train()
else:
self.netG_A.eval()
self.netG_B.eval()
print('-----------------------------------------------')
def set_input(self, input):
AtoB = self.opt.which_direction == 'AtoB'
input_A = input['A' if AtoB else 'B']
input_B = input['B' if AtoB else 'A']
self.input_A.resize_(input_A.size()).copy_(input_A)
self.input_B.resize_(input_B.size()).copy_(input_B)
self.image_paths = input['A_paths' if AtoB else 'B_paths']
def forward(self):
self.real_A = Variable(self.input_A)
self.real_B = Variable(self.input_B)
def test(self):
self.real_A = Variable(self.input_A, volatile=True)
# print(np.transpose(self.real_A.data[0].cpu().float().numpy(),(1,2,0))[:2][:2][:])
if self.opt.skip == 1:
self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_A)
else:
self.fake_B = self.netG_A.forward(self.real_A)
self.rec_A = self.netG_B.forward(self.fake_B)
self.real_B = Variable(self.input_B, volatile=True)
self.fake_A = self.netG_B.forward(self.real_B)
if self.opt.skip == 1:
self.rec_B, self.latent_fake_A = self.netG_A.forward(self.fake_A)
else:
self.rec_B = self.netG_A.forward(self.fake_A)
def predict(self):
self.real_A = Variable(self.input_A, volatile=True)
# print(np.transpose(self.real_A.data[0].cpu().float().numpy(),(1,2,0))[:2][:2][:])
if self.opt.skip == 1:
self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_A)
else:
self.fake_B = self.netG_A.forward(self.real_A)
self.rec_A = self.netG_B.forward(self.fake_B)
real_A = util.tensor2im(self.real_A.data)
fake_B = util.tensor2im(self.fake_B.data)
rec_A = util.tensor2im(self.rec_A.data)
if self.opt.skip == 1:
latent_real_A = util.tensor2im(self.latent_real_A.data)
return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ("latent_real_A", latent_real_A), ("rec_A", rec_A)])
else:
return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ("rec_A", rec_A)])
# get image paths
def get_image_paths(self):
return self.image_paths
def backward_D_basic(self, netD, real, fake):
# Real
pred_real = netD.forward(real)
if self.opt.use_wgan:
loss_D_real = pred_real.mean()
else:
loss_D_real = self.criterionGAN(pred_real, True)
# Fake
pred_fake = netD.forward(fake.detach())
if self.opt.use_wgan:
loss_D_fake = pred_fake.mean()
else:
loss_D_fake = self.criterionGAN(pred_fake, False)
# Combined loss
if self.opt.use_wgan:
loss_D = loss_D_fake - loss_D_real + self.criterionGAN.calc_gradient_penalty(netD, real.data, fake.data)
else:
loss_D = (loss_D_real + loss_D_fake) * 0.5
# backward
loss_D.backward()
return loss_D
def backward_D_A(self):
fake_B = self.fake_B_pool.query(self.fake_B)
self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)
def backward_D_B(self):
fake_A = self.fake_A_pool.query(self.fake_A)
self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)
def backward_G(self, epoch):
lambda_idt = self.opt.identity
lambda_A = self.opt.lambda_A
lambda_B = self.opt.lambda_B
# Identity loss
if lambda_idt > 0:
# G_A should be identity if real_B is fed.
self.idt_A = self.netG_A.forward(self.real_B)
self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt
# G_B should be identity if real_A is fed.
self.idt_B = self.netG_B.forward(self.real_A)
self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt
else:
self.loss_idt_A = 0
self.loss_idt_B = 0
# GAN loss
# D_A(G_A(A))
if self.opt.skip == 1:
self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_A)
else:
self.fake_B = self.netG_A.forward(self.real_A)
# = self.latent_real_A + self.opt.skip * self.real_A
pred_fake = self.netD_A.forward(self.fake_B)
if self.opt.use_wgan:
self.loss_G_A = -pred_fake.mean()
else:
self.loss_G_A = self.criterionGAN(pred_fake, True)
if self.opt.l1 > 0:
self.L1_AB = self.criterionL1(self.fake_B, self.real_B) * self.opt.l1
else:
self.L1_AB = 0
# D_B(G_B(B))
self.fake_A = self.netG_B.forward(self.real_B)
pred_fake = self.netD_B.forward(self.fake_A)
if self.opt.l1 > 0:
self.L1_BA = self.criterionL1(self.fake_A, self.real_A) * self.opt.l1
else:
self.L1_BA = 0
if self.opt.use_wgan:
self.loss_G_B = -pred_fake.mean()
else:
self.loss_G_B = self.criterionGAN(pred_fake, True)
# Forward cycle loss
if lambda_A > 0:
self.rec_A = self.netG_B.forward(self.fake_B)
self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A
else:
self.loss_cycle_A = 0
# Backward cycle loss
# = self.latent_fake_A + self.opt.skip * self.fake_A
if lambda_B > 0:
if self.opt.skip == 1:
self.rec_B, self.latent_fake_A = self.netG_A.forward(self.fake_A)
else:
self.rec_B = self.netG_A.forward(self.fake_A)
self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B
else:
self.loss_cycle_B = 0
self.loss_vgg_a = self.vgg_loss.compute_vgg_loss(self.vgg, self.fake_A, self.real_B) * self.opt.vgg if self.opt.vgg > 0 else 0
self.loss_vgg_b = self.vgg_loss.compute_vgg_loss(self.vgg, self.fake_B, self.real_A) * self.opt.vgg if self.opt.vgg > 0 else 0
if epoch <= 10:
self.loss_vgg_a = 0
self.loss_vgg_b = 0
# combined loss
self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_vgg_a + self.loss_vgg_b
# self.loss_G = self.L1_AB + self.L1_BA
self.loss_G.backward()
def optimize_parameters(self, epoch):
# forward
self.forward()
# G_A and G_B
self.optimizer_G.zero_grad()
self.backward_G(epoch)
self.optimizer_G.step()
# D_A
self.optimizer_D_A.zero_grad()
self.backward_D_A()
self.optimizer_D_A.step()
# D_B
self.optimizer_D_B.zero_grad()
self.backward_D_B()
self.optimizer_D_B.step()
def get_current_errors(self, epoch):
D_A = self.loss_D_A.data[0]
G_A = self.loss_G_A.data[0]
Cyc_A = self.loss_cycle_A.data[0]
D_B = self.loss_D_B.data[0]
G_B = self.loss_G_B.data[0]
Cyc_B = self.loss_cycle_B.data[0]
if epoch <= 10:
vgg = 0
else:
vgg = (self.loss_vgg_a.data[0] + self.loss_vgg_b.data[0]) / self.opt.vgg if self.opt.vgg > 0 else 0
if self.opt.lambda_A > 0.0:
return OrderedDict([('D_A', D_A), ('G_A', G_A), ('Cyc_A', Cyc_A),
('D_B', D_B), ('G_B', G_B), ('Cyc_B', Cyc_B), ("vgg", vgg)])
else:
return OrderedDict([('D_A', D_A), ('G_A', G_A),
('D_B', D_B), ('G_B', G_B)], ("vgg", vgg))
def get_current_visuals(self):
real_A = util.tensor2im(self.real_A.data)
fake_B = util.tensor2im(self.fake_B.data)
if self.opt.skip > 0:
latent_real_A = util.tensor2im(self.latent_real_A.data)
real_B = util.tensor2im(self.real_B.data)
fake_A = util.tensor2im(self.fake_A.data)
if self.opt.lambda_A > 0.0:
rec_A = util.tensor2im(self.rec_A.data)
rec_B = util.tensor2im(self.rec_B.data)
if self.opt.skip > 0:
latent_fake_A = util.tensor2im(self.latent_fake_A.data)
return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('rec_A', rec_A),
('real_B', real_B), ('fake_A', fake_A), ('rec_B', rec_B), ('latent_fake_A', latent_fake_A)])
else:
return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('rec_A', rec_A),
('real_B', real_B), ('fake_A', fake_A), ('rec_B', rec_B)])
else:
if self.opt.skip > 0:
return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A),
('real_B', real_B), ('fake_A', fake_A)])
else:
return OrderedDict([('real_A', real_A), ('fake_B', fake_B),
('real_B', real_B), ('fake_A', fake_A)])
def save(self, label):
self.save_network(self.netG_A, 'G_A', label, self.gpu_ids)
self.save_network(self.netD_A, 'D_A', label, self.gpu_ids)
self.save_network(self.netG_B, 'G_B', label, self.gpu_ids)
self.save_network(self.netD_B, 'D_B', label, self.gpu_ids)
def update_learning_rate(self):
lrd = self.opt.lr / self.opt.niter_decay
lr = self.old_lr - lrd
for param_group in self.optimizer_D_A.param_groups:
param_group['lr'] = lr
for param_group in self.optimizer_D_B.param_groups:
param_group['lr'] = lr
for param_group in self.optimizer_G.param_groups:
param_group['lr'] = lr
print('update learning rate: %f -> %f' % (self.old_lr, lr))
self.old_lr = lr
|