File size: 13,905 Bytes
aba0e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import numpy as np
import torch
import os
from collections import OrderedDict
from torch.autograd import Variable
import util.util as util
from collections import OrderedDict
from torch.autograd import Variable
import itertools
import util.util as util
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks
import sys


class CycleGANModel(BaseModel):
    def name(self):
        return 'CycleGANModel'

    def initialize(self, opt):
        BaseModel.initialize(self, opt)

        nb = opt.batchSize
        size = opt.fineSize
        self.opt = opt
        self.input_A = self.Tensor(nb, opt.input_nc, size, size)
        self.input_B = self.Tensor(nb, opt.output_nc, size, size)

        if opt.vgg > 0:
            self.vgg_loss = networks.PerceptualLoss()
            self.vgg_loss.cuda()
            self.vgg = networks.load_vgg16("./model")
            self.vgg.eval()
            for param in self.vgg.parameters():
                param.requires_grad = False
        # load/define networks
        # The naming conversion is different from those used in the paper
        # Code (paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)

        skip = True if opt.skip > 0 else False
        self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
                                        opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, self.gpu_ids, skip=skip, opt=opt)
        self.netG_B = networks.define_G(opt.output_nc, opt.input_nc,
                                        opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, self.gpu_ids, skip=False, opt=opt)

        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            self.netD_A = networks.define_D(opt.output_nc, opt.ndf,
                                            opt.which_model_netD,
                                            opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids)
            self.netD_B = networks.define_D(opt.input_nc, opt.ndf,
                                            opt.which_model_netD,
                                            opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids)
        if not self.isTrain or opt.continue_train:
            which_epoch = opt.which_epoch
            self.load_network(self.netG_A, 'G_A', which_epoch)
            self.load_network(self.netG_B, 'G_B', which_epoch)
            if self.isTrain:
                self.load_network(self.netD_A, 'D_A', which_epoch)
                self.load_network(self.netD_B, 'D_B', which_epoch)

        if self.isTrain:
            self.old_lr = opt.lr
            self.fake_A_pool = ImagePool(opt.pool_size)
            self.fake_B_pool = ImagePool(opt.pool_size)
            # define loss functions
            if opt.use_wgan:
                self.criterionGAN = networks.DiscLossWGANGP()
            else:
                self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
            self.criterionCycle = torch.nn.L1Loss()
            self.criterionL1 = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()
            # initialize optimizers
            self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))

        print('---------- Networks initialized -------------')
        networks.print_network(self.netG_A)
        networks.print_network(self.netG_B)
        if self.isTrain:
            networks.print_network(self.netD_A)
            networks.print_network(self.netD_B)
        if opt.isTrain:
            self.netG_A.train()
            self.netG_B.train()
        else:
            self.netG_A.eval()
            self.netG_B.eval()
        print('-----------------------------------------------')

    def set_input(self, input):
        AtoB = self.opt.which_direction == 'AtoB'
        input_A = input['A' if AtoB else 'B']
        input_B = input['B' if AtoB else 'A']
        self.input_A.resize_(input_A.size()).copy_(input_A)
        self.input_B.resize_(input_B.size()).copy_(input_B)
        self.image_paths = input['A_paths' if AtoB else 'B_paths']

    def forward(self):
        self.real_A = Variable(self.input_A)
        self.real_B = Variable(self.input_B)


    def test(self):
        self.real_A = Variable(self.input_A, volatile=True)
        # print(np.transpose(self.real_A.data[0].cpu().float().numpy(),(1,2,0))[:2][:2][:])
        if self.opt.skip == 1:
            self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_A)
        else:
            self.fake_B = self.netG_A.forward(self.real_A)
        self.rec_A = self.netG_B.forward(self.fake_B)

        self.real_B = Variable(self.input_B, volatile=True)
        self.fake_A = self.netG_B.forward(self.real_B)
        if self.opt.skip == 1:
            self.rec_B, self.latent_fake_A = self.netG_A.forward(self.fake_A)
        else:
            self.rec_B = self.netG_A.forward(self.fake_A)

    def predict(self):
        self.real_A = Variable(self.input_A, volatile=True)
        # print(np.transpose(self.real_A.data[0].cpu().float().numpy(),(1,2,0))[:2][:2][:])
        if self.opt.skip == 1:
            self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_A)
        else:
            self.fake_B = self.netG_A.forward(self.real_A)
        self.rec_A = self.netG_B.forward(self.fake_B)

        real_A = util.tensor2im(self.real_A.data)
        fake_B = util.tensor2im(self.fake_B.data)
        rec_A = util.tensor2im(self.rec_A.data)
        if self.opt.skip == 1:
            latent_real_A = util.tensor2im(self.latent_real_A.data)
            return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ("latent_real_A", latent_real_A), ("rec_A", rec_A)])
        else:
            return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ("rec_A", rec_A)])

    # get image paths
    def get_image_paths(self):
        return self.image_paths

    def backward_D_basic(self, netD, real, fake):
        # Real
        pred_real = netD.forward(real)
        if self.opt.use_wgan:
            loss_D_real = pred_real.mean()
        else:
            loss_D_real = self.criterionGAN(pred_real, True)
        # Fake
        pred_fake = netD.forward(fake.detach())
        if self.opt.use_wgan:
            loss_D_fake = pred_fake.mean()
        else:
            loss_D_fake = self.criterionGAN(pred_fake, False)
        # Combined loss
        if self.opt.use_wgan:
            loss_D = loss_D_fake - loss_D_real + self.criterionGAN.calc_gradient_penalty(netD, real.data, fake.data)
        else:
            loss_D = (loss_D_real + loss_D_fake) * 0.5
        # backward
        loss_D.backward()
        return loss_D

    def backward_D_A(self):
        fake_B = self.fake_B_pool.query(self.fake_B)
        self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)

    def backward_D_B(self):
        fake_A = self.fake_A_pool.query(self.fake_A)
        self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)

    def backward_G(self, epoch):
        lambda_idt = self.opt.identity
        lambda_A = self.opt.lambda_A
        lambda_B = self.opt.lambda_B
        # Identity loss
        if lambda_idt > 0:
            # G_A should be identity if real_B is fed.
            self.idt_A = self.netG_A.forward(self.real_B)
            self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt
            # G_B should be identity if real_A is fed.
            self.idt_B = self.netG_B.forward(self.real_A)
            self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt
        else:
            self.loss_idt_A = 0
            self.loss_idt_B = 0

        # GAN loss
        # D_A(G_A(A))
        if self.opt.skip == 1:
            self.fake_B, self.latent_real_A = self.netG_A.forward(self.real_A)
        else:
            self.fake_B = self.netG_A.forward(self.real_A)
         # = self.latent_real_A + self.opt.skip * self.real_A
        pred_fake = self.netD_A.forward(self.fake_B)
        if self.opt.use_wgan:
            self.loss_G_A = -pred_fake.mean()
        else:
            self.loss_G_A = self.criterionGAN(pred_fake, True)
        if self.opt.l1 > 0:
            self.L1_AB = self.criterionL1(self.fake_B, self.real_B) * self.opt.l1
        else:
            self.L1_AB = 0
        # D_B(G_B(B))
        self.fake_A = self.netG_B.forward(self.real_B)
        pred_fake = self.netD_B.forward(self.fake_A)
        if self.opt.l1 > 0:
            self.L1_BA = self.criterionL1(self.fake_A, self.real_A) * self.opt.l1
        else:
            self.L1_BA = 0
        if self.opt.use_wgan:
            self.loss_G_B = -pred_fake.mean()
        else:
            self.loss_G_B = self.criterionGAN(pred_fake, True)
        # Forward cycle loss
        
        if lambda_A > 0:
            self.rec_A = self.netG_B.forward(self.fake_B)
            self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A
        else:
            self.loss_cycle_A = 0
        # Backward cycle loss
        
         # = self.latent_fake_A + self.opt.skip * self.fake_A
        if lambda_B > 0:
            if self.opt.skip == 1:
                self.rec_B, self.latent_fake_A = self.netG_A.forward(self.fake_A)
            else:
                self.rec_B = self.netG_A.forward(self.fake_A)
            self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B
        else:
            self.loss_cycle_B = 0
        self.loss_vgg_a = self.vgg_loss.compute_vgg_loss(self.vgg, self.fake_A, self.real_B) * self.opt.vgg if self.opt.vgg > 0 else 0
        self.loss_vgg_b = self.vgg_loss.compute_vgg_loss(self.vgg, self.fake_B, self.real_A) * self.opt.vgg if self.opt.vgg > 0 else 0
        if epoch <= 10:
            self.loss_vgg_a = 0
            self.loss_vgg_b = 0
        # combined loss
        self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_vgg_a + self.loss_vgg_b
        # self.loss_G = self.L1_AB + self.L1_BA
        self.loss_G.backward()

    def optimize_parameters(self, epoch):
        # forward
        self.forward()
        # G_A and G_B
        self.optimizer_G.zero_grad()
        self.backward_G(epoch)
        self.optimizer_G.step()
        # D_A
        self.optimizer_D_A.zero_grad()
        self.backward_D_A()
        self.optimizer_D_A.step()
        # D_B
        self.optimizer_D_B.zero_grad()
        self.backward_D_B()
        self.optimizer_D_B.step()

    def get_current_errors(self, epoch):
        D_A = self.loss_D_A.data[0]
        G_A = self.loss_G_A.data[0]
        Cyc_A = self.loss_cycle_A.data[0]
        D_B = self.loss_D_B.data[0]
        G_B = self.loss_G_B.data[0]
        Cyc_B = self.loss_cycle_B.data[0]
        if epoch <= 10:
            vgg = 0
        else:
            vgg = (self.loss_vgg_a.data[0] + self.loss_vgg_b.data[0]) / self.opt.vgg if self.opt.vgg > 0 else 0
        if self.opt.lambda_A > 0.0:
            return OrderedDict([('D_A', D_A), ('G_A', G_A), ('Cyc_A', Cyc_A),
                                ('D_B', D_B), ('G_B', G_B), ('Cyc_B', Cyc_B), ("vgg", vgg)])
        else:
            return OrderedDict([('D_A', D_A), ('G_A', G_A), 
                                ('D_B', D_B), ('G_B', G_B)], ("vgg", vgg))

    def get_current_visuals(self):
        real_A = util.tensor2im(self.real_A.data)
        fake_B = util.tensor2im(self.fake_B.data)
        if self.opt.skip > 0:
            latent_real_A = util.tensor2im(self.latent_real_A.data)
        
        real_B = util.tensor2im(self.real_B.data)
        fake_A = util.tensor2im(self.fake_A.data)
        
        if self.opt.lambda_A > 0.0:
            rec_A = util.tensor2im(self.rec_A.data)
            rec_B = util.tensor2im(self.rec_B.data)
            if self.opt.skip > 0:
                latent_fake_A = util.tensor2im(self.latent_fake_A.data)
                return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('rec_A', rec_A), 
                                    ('real_B', real_B), ('fake_A', fake_A), ('rec_B', rec_B), ('latent_fake_A', latent_fake_A)])
            else:
                return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('rec_A', rec_A), 
                                ('real_B', real_B), ('fake_A', fake_A), ('rec_B', rec_B)])
        else:
            if self.opt.skip > 0:
                return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), 
                                    ('real_B', real_B), ('fake_A', fake_A)])
            else:
                return OrderedDict([('real_A', real_A), ('fake_B', fake_B),
                                    ('real_B', real_B), ('fake_A', fake_A)])

    def save(self, label):
        self.save_network(self.netG_A, 'G_A', label, self.gpu_ids)
        self.save_network(self.netD_A, 'D_A', label, self.gpu_ids)
        self.save_network(self.netG_B, 'G_B', label, self.gpu_ids)
        self.save_network(self.netD_B, 'D_B', label, self.gpu_ids)

    def update_learning_rate(self):
        lrd = self.opt.lr / self.opt.niter_decay
        lr = self.old_lr - lrd
        for param_group in self.optimizer_D_A.param_groups:
            param_group['lr'] = lr
        for param_group in self.optimizer_D_B.param_groups:
            param_group['lr'] = lr
        for param_group in self.optimizer_G.param_groups:
            param_group['lr'] = lr

        print('update learning rate: %f -> %f' % (self.old_lr, lr))
        self.old_lr = lr