File size: 3,092 Bytes
aba0e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (C) 2017 NVIDIA Corporation.  All rights reserved.
# Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

# logger options
image_save_iter: 1000         # How often do you want to save output images during training
image_display_iter:  10      # How often do you want to display output images during training
display_size: 8              # How many images do you want to display each time
snapshot_save_iter: 10000     # How often do you want to save trained models
log_iter: 1                   # How often do you want to log the training stats

# optimization options
max_iter: 1000000             # maximum number of training iterations
batch_size: 1                 # batch size
weight_decay: 0.0001          # weight decay
beta1: 0.5                    # Adam parameter
beta2: 0.999                  # Adam parameter
init: kaiming                 # initialization [gaussian/kaiming/xavier/orthogonal]
lr: 0.0001                    # initial learning rate
lr_policy: step               # learning rate scheduler
step_size: 100000             # how often to decay learning rate
gamma: 0.5                    # how much to decay learning rate
gan_w: 1                      # weight of adversarial loss
recon_x_w: 10                 # weight of image reconstruction loss
recon_h_w: 0                  # weight of hidden reconstruction loss
recon_kl_w: 0.01              # weight of KL loss for reconstruction
recon_x_cyc_w: 10             # weight of cycle consistency loss
recon_kl_cyc_w: 0.01          # weight of KL loss for cycle consistency
vgg_w:   0                    # weight of domain-invariant perceptual loss

# model options
gen:
  dim: 64                     # number of filters in the bottommost layer
  activ: relu                 # activation function [relu/lrelu/prelu/selu/tanh]
  n_downsample: 2             # number of downsampling layers in content encoder
  n_res: 4                    # number of residual blocks in content encoder/decoder
  pad_type: reflect           # padding type [zero/reflect]
dis:
  dim: 64                     # number of filters in the bottommost layer
  norm: none                  # normalization layer [none/bn/in/ln]
  activ: lrelu                # activation function [relu/lrelu/prelu/selu/tanh]
  n_layer: 4                  # number of layers in D
  gan_type: lsgan             # GAN loss [lsgan/nsgan]
  num_scales: 3               # number of scales
  pad_type: reflect           # padding type [zero/reflect]

# data options
input_dim_a: 3                              # number of image channels [1/3]
input_dim_b: 3                              # number of image channels [1/3]
num_workers: 8                              # number of data loading threads
new_size: 256                             # first resize the shortest image side to this size
crop_image_height: 256                      # random crop image of this height
crop_image_width: 256                       # random crop image of this width

data_root: ./datasets/lol/     # dataset folder location