metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: heartbeat-detection
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: train[:90]
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1
heartbeat-detection
This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.4420
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6017 | 1.0 | 8 | 1.5921 | 0.1481 |
1.582 | 2.0 | 16 | 1.5723 | 0.4444 |
1.5626 | 3.0 | 24 | 1.5543 | 0.7778 |
1.5442 | 4.0 | 32 | 1.5375 | 0.8148 |
1.5278 | 5.0 | 40 | 1.5220 | 0.8889 |
1.512 | 6.0 | 48 | 1.5077 | 0.9259 |
1.4977 | 7.0 | 56 | 1.4947 | 0.9259 |
1.4872 | 8.0 | 64 | 1.4832 | 0.9630 |
1.4741 | 9.0 | 72 | 1.4729 | 0.9630 |
1.4657 | 10.0 | 80 | 1.4640 | 0.9630 |
1.457 | 11.0 | 88 | 1.4564 | 1.0 |
1.4504 | 12.0 | 96 | 1.4502 | 1.0 |
1.4445 | 13.0 | 104 | 1.4454 | 1.0 |
1.4393 | 14.0 | 112 | 1.4420 | 1.0 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2