heartbeat-detection / README.md
Hemg's picture
Model save
35f7c87 verified
|
raw
history blame
2.48 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: heartbeat-detection
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train[:90]
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

heartbeat-detection

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4420
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6017 1.0 8 1.5921 0.1481
1.582 2.0 16 1.5723 0.4444
1.5626 3.0 24 1.5543 0.7778
1.5442 4.0 32 1.5375 0.8148
1.5278 5.0 40 1.5220 0.8889
1.512 6.0 48 1.5077 0.9259
1.4977 7.0 56 1.4947 0.9259
1.4872 8.0 64 1.4832 0.9630
1.4741 9.0 72 1.4729 0.9630
1.4657 10.0 80 1.4640 0.9630
1.457 11.0 88 1.4564 1.0
1.4504 12.0 96 1.4502 1.0
1.4445 13.0 104 1.4454 1.0
1.4393 14.0 112 1.4420 1.0

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2