tiedeman commited on
Commit
3ab6808
1 Parent(s): 30adaec

Initial commit

Browse files
.gitattributes CHANGED
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - cs
4
+ - dsb
5
+ - en
6
+ - hsb
7
+ - pl
8
+ - zlw
9
+
10
+ tags:
11
+ - translation
12
+
13
+ license: cc-by-4.0
14
+ model-index:
15
+ - name: opus-mt-tc-big-zlw-en
16
+ results:
17
+ - task:
18
+ name: Translation ces-eng
19
+ type: translation
20
+ args: ces-eng
21
+ dataset:
22
+ name: flores101-devtest
23
+ type: flores_101
24
+ args: ces eng devtest
25
+ metrics:
26
+ - name: BLEU
27
+ type: bleu
28
+ value: 41.2
29
+ - task:
30
+ name: Translation pol-eng
31
+ type: translation
32
+ args: pol-eng
33
+ dataset:
34
+ name: flores101-devtest
35
+ type: flores_101
36
+ args: pol eng devtest
37
+ metrics:
38
+ - name: BLEU
39
+ type: bleu
40
+ value: 29.6
41
+ - task:
42
+ name: Translation slk-eng
43
+ type: translation
44
+ args: slk-eng
45
+ dataset:
46
+ name: flores101-devtest
47
+ type: flores_101
48
+ args: slk eng devtest
49
+ metrics:
50
+ - name: BLEU
51
+ type: bleu
52
+ value: 40.0
53
+ - task:
54
+ name: Translation ces-eng
55
+ type: translation
56
+ args: ces-eng
57
+ dataset:
58
+ name: multi30k_test_2016_flickr
59
+ type: multi30k-2016_flickr
60
+ args: ces-eng
61
+ metrics:
62
+ - name: BLEU
63
+ type: bleu
64
+ value: 37.6
65
+ - task:
66
+ name: Translation ces-eng
67
+ type: translation
68
+ args: ces-eng
69
+ dataset:
70
+ name: multi30k_test_2018_flickr
71
+ type: multi30k-2018_flickr
72
+ args: ces-eng
73
+ metrics:
74
+ - name: BLEU
75
+ type: bleu
76
+ value: 37.4
77
+ - task:
78
+ name: Translation ces-eng
79
+ type: translation
80
+ args: ces-eng
81
+ dataset:
82
+ name: news-test2008
83
+ type: news-test2008
84
+ args: ces-eng
85
+ metrics:
86
+ - name: BLEU
87
+ type: bleu
88
+ value: 26.3
89
+ - task:
90
+ name: Translation pol-eng
91
+ type: translation
92
+ args: pol-eng
93
+ dataset:
94
+ name: newsdev2020
95
+ type: newsdev2020
96
+ args: pol-eng
97
+ metrics:
98
+ - name: BLEU
99
+ type: bleu
100
+ value: 32.7
101
+ - task:
102
+ name: Translation ces-eng
103
+ type: translation
104
+ args: ces-eng
105
+ dataset:
106
+ name: tatoeba-test-v2021-08-07
107
+ type: tatoeba_mt
108
+ args: ces-eng
109
+ metrics:
110
+ - name: BLEU
111
+ type: bleu
112
+ value: 57.4
113
+ - task:
114
+ name: Translation pol-eng
115
+ type: translation
116
+ args: pol-eng
117
+ dataset:
118
+ name: tatoeba-test-v2021-08-07
119
+ type: tatoeba_mt
120
+ args: pol-eng
121
+ metrics:
122
+ - name: BLEU
123
+ type: bleu
124
+ value: 55.7
125
+ - task:
126
+ name: Translation ces-eng
127
+ type: translation
128
+ args: ces-eng
129
+ dataset:
130
+ name: newstest2009
131
+ type: wmt-2009-news
132
+ args: ces-eng
133
+ metrics:
134
+ - name: BLEU
135
+ type: bleu
136
+ value: 29.5
137
+ - task:
138
+ name: Translation ces-eng
139
+ type: translation
140
+ args: ces-eng
141
+ dataset:
142
+ name: newstest2010
143
+ type: wmt-2010-news
144
+ args: ces-eng
145
+ metrics:
146
+ - name: BLEU
147
+ type: bleu
148
+ value: 30.7
149
+ - task:
150
+ name: Translation ces-eng
151
+ type: translation
152
+ args: ces-eng
153
+ dataset:
154
+ name: newstest2011
155
+ type: wmt-2011-news
156
+ args: ces-eng
157
+ metrics:
158
+ - name: BLEU
159
+ type: bleu
160
+ value: 30.9
161
+ - task:
162
+ name: Translation ces-eng
163
+ type: translation
164
+ args: ces-eng
165
+ dataset:
166
+ name: newstest2012
167
+ type: wmt-2012-news
168
+ args: ces-eng
169
+ metrics:
170
+ - name: BLEU
171
+ type: bleu
172
+ value: 29.4
173
+ - task:
174
+ name: Translation ces-eng
175
+ type: translation
176
+ args: ces-eng
177
+ dataset:
178
+ name: newstest2013
179
+ type: wmt-2013-news
180
+ args: ces-eng
181
+ metrics:
182
+ - name: BLEU
183
+ type: bleu
184
+ value: 32.8
185
+ - task:
186
+ name: Translation ces-eng
187
+ type: translation
188
+ args: ces-eng
189
+ dataset:
190
+ name: newstest2014
191
+ type: wmt-2014-news
192
+ args: ces-eng
193
+ metrics:
194
+ - name: BLEU
195
+ type: bleu
196
+ value: 38.7
197
+ - task:
198
+ name: Translation ces-eng
199
+ type: translation
200
+ args: ces-eng
201
+ dataset:
202
+ name: newstest2015
203
+ type: wmt-2015-news
204
+ args: ces-eng
205
+ metrics:
206
+ - name: BLEU
207
+ type: bleu
208
+ value: 33.4
209
+ - task:
210
+ name: Translation ces-eng
211
+ type: translation
212
+ args: ces-eng
213
+ dataset:
214
+ name: newstest2016
215
+ type: wmt-2016-news
216
+ args: ces-eng
217
+ metrics:
218
+ - name: BLEU
219
+ type: bleu
220
+ value: 37.1
221
+ - task:
222
+ name: Translation ces-eng
223
+ type: translation
224
+ args: ces-eng
225
+ dataset:
226
+ name: newstest2017
227
+ type: wmt-2017-news
228
+ args: ces-eng
229
+ metrics:
230
+ - name: BLEU
231
+ type: bleu
232
+ value: 32.5
233
+ - task:
234
+ name: Translation ces-eng
235
+ type: translation
236
+ args: ces-eng
237
+ dataset:
238
+ name: newstest2018
239
+ type: wmt-2018-news
240
+ args: ces-eng
241
+ metrics:
242
+ - name: BLEU
243
+ type: bleu
244
+ value: 33.1
245
+ - task:
246
+ name: Translation pol-eng
247
+ type: translation
248
+ args: pol-eng
249
+ dataset:
250
+ name: newstest2020
251
+ type: wmt-2020-news
252
+ args: pol-eng
253
+ metrics:
254
+ - name: BLEU
255
+ type: bleu
256
+ value: 32.6
257
+ ---
258
+ # opus-mt-tc-big-zlw-en
259
+
260
+ Neural machine translation model for translating from West Slavic languages (zlw) to English (en).
261
+
262
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
263
+
264
+ * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
265
+
266
+ ```
267
+ @inproceedings{tiedemann-thottingal-2020-opus,
268
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
269
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
270
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
271
+ month = nov,
272
+ year = "2020",
273
+ address = "Lisboa, Portugal",
274
+ publisher = "European Association for Machine Translation",
275
+ url = "https://aclanthology.org/2020.eamt-1.61",
276
+ pages = "479--480",
277
+ }
278
+
279
+ @inproceedings{tiedemann-2020-tatoeba,
280
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
281
+ author = {Tiedemann, J{\"o}rg},
282
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
283
+ month = nov,
284
+ year = "2020",
285
+ address = "Online",
286
+ publisher = "Association for Computational Linguistics",
287
+ url = "https://aclanthology.org/2020.wmt-1.139",
288
+ pages = "1174--1182",
289
+ }
290
+ ```
291
+
292
+ ## Model info
293
+
294
+ * Release: 2022-03-17
295
+ * source language(s): ces dsb hsb pol
296
+ * target language(s): eng
297
+ * model: transformer-big
298
+ * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
299
+ * tokenization: SentencePiece (spm32k,spm32k)
300
+ * original model: [opusTCv20210807+bt_transformer-big_2022-03-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opusTCv20210807+bt_transformer-big_2022-03-17.zip)
301
+ * more information released models: [OPUS-MT zlw-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zlw-eng/README.md)
302
+
303
+ ## Usage
304
+
305
+ A short example code:
306
+
307
+ ```python
308
+ from transformers import MarianMTModel, MarianTokenizer
309
+
310
+ src_text = [
311
+ "Aoi'ego hobby to tańczenie.",
312
+ "Myślisz, że Tom planuje to zrobić?"
313
+ ]
314
+
315
+ model_name = "pytorch-models/opus-mt-tc-big-zlw-en"
316
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
317
+ model = MarianMTModel.from_pretrained(model_name)
318
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
319
+
320
+ for t in translated:
321
+ print( tokenizer.decode(t, skip_special_tokens=True) )
322
+
323
+ # expected output:
324
+ # Aoi's hobby is dancing.
325
+ # You think Tom's planning on doing that?
326
+ ```
327
+
328
+ You can also use OPUS-MT models with the transformers pipelines, for example:
329
+
330
+ ```python
331
+ from transformers import pipeline
332
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zlw-en")
333
+ print(pipe("Aoi'ego hobby to tańczenie."))
334
+
335
+ # expected output: Aoi's hobby is dancing.
336
+ ```
337
+
338
+ ## Benchmarks
339
+
340
+ * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opusTCv20210807+bt_transformer-big_2022-03-17.test.txt)
341
+ * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt)
342
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
343
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
344
+
345
+ | langpair | testset | chr-F | BLEU | #sent | #words |
346
+ |----------|---------|-------|-------|-------|--------|
347
+ | ces-eng | tatoeba-test-v2021-08-07 | 0.71861 | 57.4 | 13824 | 105010 |
348
+ | pol-eng | tatoeba-test-v2021-08-07 | 0.70544 | 55.7 | 10099 | 75766 |
349
+ | ces-eng | flores101-devtest | 0.66444 | 41.2 | 1012 | 24721 |
350
+ | pol-eng | flores101-devtest | 0.58301 | 29.6 | 1012 | 24721 |
351
+ | slk-eng | flores101-devtest | 0.66103 | 40.0 | 1012 | 24721 |
352
+ | ces-eng | multi30k_test_2016_flickr | 0.61482 | 37.6 | 1000 | 12955 |
353
+ | ces-eng | multi30k_test_2018_flickr | 0.61405 | 37.4 | 1071 | 14689 |
354
+ | pol-eng | newsdev2020 | 0.60478 | 32.7 | 2000 | 46654 |
355
+ | ces-eng | newssyscomb2009 | 0.56495 | 30.2 | 502 | 11818 |
356
+ | ces-eng | news-test2008 | 0.54300 | 26.3 | 2051 | 49380 |
357
+ | ces-eng | newstest2009 | 0.56309 | 29.5 | 2525 | 65399 |
358
+ | ces-eng | newstest2010 | 0.57778 | 30.7 | 2489 | 61711 |
359
+ | ces-eng | newstest2011 | 0.57336 | 30.9 | 3003 | 74681 |
360
+ | ces-eng | newstest2012 | 0.56761 | 29.4 | 3003 | 72812 |
361
+ | ces-eng | newstest2013 | 0.58809 | 32.8 | 3000 | 64505 |
362
+ | ces-eng | newstest2014 | 0.64401 | 38.7 | 3003 | 68065 |
363
+ | ces-eng | newstest2015 | 0.58607 | 33.4 | 2656 | 53569 |
364
+ | ces-eng | newstest2016 | 0.61780 | 37.1 | 2999 | 64670 |
365
+ | ces-eng | newstest2017 | 0.58259 | 32.5 | 3005 | 61721 |
366
+ | ces-eng | newstest2018 | 0.58677 | 33.1 | 2983 | 63495 |
367
+ | pol-eng | newstest2020 | 0.60047 | 32.6 | 1001 | 21755 |
368
+
369
+ ## Acknowledgements
370
+
371
+ The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
372
+
373
+ ## Model conversion info
374
+
375
+ * transformers version: 4.16.2
376
+ * OPUS-MT git hash: 3405783
377
+ * port time: Wed Apr 13 20:19:48 EEST 2022
378
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ces-eng flores101-dev 0.65704 39.7 997 23555
2
+ pol-eng flores101-dev 0.58424 29.8 997 23555
3
+ slk-eng flores101-dev 0.66379 40.1 997 23555
4
+ ces-eng flores101-devtest 0.66444 41.2 1012 24721
5
+ pol-eng flores101-devtest 0.58301 29.6 1012 24721
6
+ slk-eng flores101-devtest 0.66103 40.0 1012 24721
7
+ ces-eng multi30k_test_2016_flickr 0.61482 37.6 1000 12955
8
+ ces-eng multi30k_test_2018_flickr 0.61405 37.4 1071 14689
9
+ pol-eng newsdev2020 0.60478 32.7 2000 46654
10
+ ces-eng newssyscomb2009 0.56495 30.2 502 11818
11
+ ces-eng news-test2008 0.54300 26.3 2051 49380
12
+ ces-eng newstest2009 0.56309 29.5 2525 65399
13
+ ces-eng newstest2010 0.57778 30.7 2489 61711
14
+ ces-eng newstest2011 0.57336 30.9 3003 74681
15
+ ces-eng newstest2012 0.56761 29.4 3003 72812
16
+ ces-eng newstest2013 0.58809 32.8 3000 64505
17
+ ces-eng newstest2014 0.64401 38.7 3003 68065
18
+ ces-eng newstest2015 0.58607 33.4 2656 53569
19
+ ces-eng newstest2016 0.61780 37.1 2999 64670
20
+ ces-eng newstest2017 0.58259 32.5 3005 61721
21
+ ces-eng newstest2018 0.58677 33.1 2983 63495
22
+ pol-eng newstest2020 0.60047 32.6 1001 21755
23
+ ces-eng tatoeba-test-v2020-07-28 0.72722 58.5 10000 75376
24
+ pol-eng tatoeba-test-v2020-07-28 0.70515 55.7 10000 75002
25
+ ces-eng tatoeba-test-v2021-03-30 0.72179 57.7 12076 91333
26
+ pol-eng tatoeba-test-v2021-03-30 0.70528 55.7 10056 75479
27
+ ces-eng tatoeba-test-v2021-08-07 0.71861 57.4 13824 105010
28
+ pol-eng tatoeba-test-v2021-08-07 0.70544 55.7 10099 75766
benchmark_translations.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad4d5097406a80af1e7a9f3565017934d47c324754f2c9a7da0ea6f71879ce98
3
+ size 7975989
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "relu",
4
+ "architectures": [
5
+ "MarianMTModel"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "bad_words_ids": [
9
+ [
10
+ 58101
11
+ ]
12
+ ],
13
+ "bos_token_id": 0,
14
+ "classifier_dropout": 0.0,
15
+ "d_model": 1024,
16
+ "decoder_attention_heads": 16,
17
+ "decoder_ffn_dim": 4096,
18
+ "decoder_layerdrop": 0.0,
19
+ "decoder_layers": 6,
20
+ "decoder_start_token_id": 58101,
21
+ "decoder_vocab_size": 58102,
22
+ "dropout": 0.1,
23
+ "encoder_attention_heads": 16,
24
+ "encoder_ffn_dim": 4096,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 6,
27
+ "eos_token_id": 42640,
28
+ "forced_eos_token_id": 42640,
29
+ "init_std": 0.02,
30
+ "is_encoder_decoder": true,
31
+ "max_length": 512,
32
+ "max_position_embeddings": 1024,
33
+ "model_type": "marian",
34
+ "normalize_embedding": false,
35
+ "num_beams": 4,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 58101,
38
+ "scale_embedding": true,
39
+ "share_encoder_decoder_embeddings": true,
40
+ "static_position_embeddings": true,
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.18.0.dev0",
43
+ "use_cache": true,
44
+ "vocab_size": 58102
45
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19eb1ca44900a7a5d90e18109a9b704d86d48f5e6bafa7379ee1d25e2fe06c14
3
+ size 590908419
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f6c4f92c0339fc552f89bf13f0131bf7f219a02bcfd160492d9e5f23829e80a
3
+ size 820935
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:578a275c6f4a88a733d01da296827a167eaa46c289c113b51446ab1470ec1fa1
3
+ size 796568
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "zlw", "target_lang": "en", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20210807+bt_transformer-big_2022-03-17/zlw-en", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff