tiedeman commited on
Commit
aa3263c
·
1 Parent(s): bdb9b8c

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - be
4
+ - bg
5
+ - hr
6
+ - ru
7
+ - sh
8
+ - sl
9
+ - sr_Cyrl
10
+ - sr_Latn
11
+ - uk
12
+ - zle
13
+ - zls
14
+
15
+ tags:
16
+ - translation
17
+
18
+ license: cc-by-4.0
19
+ model-index:
20
+ - name: opus-mt-tc-big-zle-zls
21
+ results:
22
+ - task:
23
+ name: Translation rus-bul
24
+ type: translation
25
+ args: rus-bul
26
+ dataset:
27
+ name: flores101-devtest
28
+ type: flores_101
29
+ args: rus bul devtest
30
+ metrics:
31
+ - name: BLEU
32
+ type: bleu
33
+ value: 28.9
34
+ - task:
35
+ name: Translation rus-hrv
36
+ type: translation
37
+ args: rus-hrv
38
+ dataset:
39
+ name: flores101-devtest
40
+ type: flores_101
41
+ args: rus hrv devtest
42
+ metrics:
43
+ - name: BLEU
44
+ type: bleu
45
+ value: 23.2
46
+ - task:
47
+ name: Translation rus-mkd
48
+ type: translation
49
+ args: rus-mkd
50
+ dataset:
51
+ name: flores101-devtest
52
+ type: flores_101
53
+ args: rus mkd devtest
54
+ metrics:
55
+ - name: BLEU
56
+ type: bleu
57
+ value: 24.3
58
+ - task:
59
+ name: Translation rus-slv
60
+ type: translation
61
+ args: rus-slv
62
+ dataset:
63
+ name: flores101-devtest
64
+ type: flores_101
65
+ args: rus slv devtest
66
+ metrics:
67
+ - name: BLEU
68
+ type: bleu
69
+ value: 23.1
70
+ - task:
71
+ name: Translation rus-srp_Cyrl
72
+ type: translation
73
+ args: rus-srp_Cyrl
74
+ dataset:
75
+ name: flores101-devtest
76
+ type: flores_101
77
+ args: rus srp_Cyrl devtest
78
+ metrics:
79
+ - name: BLEU
80
+ type: bleu
81
+ value: 24.1
82
+ - task:
83
+ name: Translation ukr-bul
84
+ type: translation
85
+ args: ukr-bul
86
+ dataset:
87
+ name: flores101-devtest
88
+ type: flores_101
89
+ args: ukr bul devtest
90
+ metrics:
91
+ - name: BLEU
92
+ type: bleu
93
+ value: 30.8
94
+ - task:
95
+ name: Translation ukr-hrv
96
+ type: translation
97
+ args: ukr-hrv
98
+ dataset:
99
+ name: flores101-devtest
100
+ type: flores_101
101
+ args: ukr hrv devtest
102
+ metrics:
103
+ - name: BLEU
104
+ type: bleu
105
+ value: 24.6
106
+ - task:
107
+ name: Translation ukr-mkd
108
+ type: translation
109
+ args: ukr-mkd
110
+ dataset:
111
+ name: flores101-devtest
112
+ type: flores_101
113
+ args: ukr mkd devtest
114
+ metrics:
115
+ - name: BLEU
116
+ type: bleu
117
+ value: 26.2
118
+ - task:
119
+ name: Translation ukr-slv
120
+ type: translation
121
+ args: ukr-slv
122
+ dataset:
123
+ name: flores101-devtest
124
+ type: flores_101
125
+ args: ukr slv devtest
126
+ metrics:
127
+ - name: BLEU
128
+ type: bleu
129
+ value: 24.2
130
+ - task:
131
+ name: Translation ukr-srp_Cyrl
132
+ type: translation
133
+ args: ukr-srp_Cyrl
134
+ dataset:
135
+ name: flores101-devtest
136
+ type: flores_101
137
+ args: ukr srp_Cyrl devtest
138
+ metrics:
139
+ - name: BLEU
140
+ type: bleu
141
+ value: 26.2
142
+ - task:
143
+ name: Translation rus-bul
144
+ type: translation
145
+ args: rus-bul
146
+ dataset:
147
+ name: tatoeba-test-v2021-08-07
148
+ type: tatoeba_mt
149
+ args: rus-bul
150
+ metrics:
151
+ - name: BLEU
152
+ type: bleu
153
+ value: 53.7
154
+ - task:
155
+ name: Translation rus-hbs
156
+ type: translation
157
+ args: rus-hbs
158
+ dataset:
159
+ name: tatoeba-test-v2021-08-07
160
+ type: tatoeba_mt
161
+ args: rus-hbs
162
+ metrics:
163
+ - name: BLEU
164
+ type: bleu
165
+ value: 49.4
166
+ - task:
167
+ name: Translation rus-slv
168
+ type: translation
169
+ args: rus-slv
170
+ dataset:
171
+ name: tatoeba-test-v2021-08-07
172
+ type: tatoeba_mt
173
+ args: rus-slv
174
+ metrics:
175
+ - name: BLEU
176
+ type: bleu
177
+ value: 21.5
178
+ - task:
179
+ name: Translation rus-srp_Cyrl
180
+ type: translation
181
+ args: rus-srp_Cyrl
182
+ dataset:
183
+ name: tatoeba-test-v2021-08-07
184
+ type: tatoeba_mt
185
+ args: rus-srp_Cyrl
186
+ metrics:
187
+ - name: BLEU
188
+ type: bleu
189
+ value: 46.1
190
+ - task:
191
+ name: Translation rus-srp_Latn
192
+ type: translation
193
+ args: rus-srp_Latn
194
+ dataset:
195
+ name: tatoeba-test-v2021-08-07
196
+ type: tatoeba_mt
197
+ args: rus-srp_Latn
198
+ metrics:
199
+ - name: BLEU
200
+ type: bleu
201
+ value: 51.7
202
+ - task:
203
+ name: Translation ukr-bul
204
+ type: translation
205
+ args: ukr-bul
206
+ dataset:
207
+ name: tatoeba-test-v2021-08-07
208
+ type: tatoeba_mt
209
+ args: ukr-bul
210
+ metrics:
211
+ - name: BLEU
212
+ type: bleu
213
+ value: 61.3
214
+ - task:
215
+ name: Translation ukr-hbs
216
+ type: translation
217
+ args: ukr-hbs
218
+ dataset:
219
+ name: tatoeba-test-v2021-08-07
220
+ type: tatoeba_mt
221
+ args: ukr-hbs
222
+ metrics:
223
+ - name: BLEU
224
+ type: bleu
225
+ value: 52.1
226
+ - task:
227
+ name: Translation ukr-hrv
228
+ type: translation
229
+ args: ukr-hrv
230
+ dataset:
231
+ name: tatoeba-test-v2021-08-07
232
+ type: tatoeba_mt
233
+ args: ukr-hrv
234
+ metrics:
235
+ - name: BLEU
236
+ type: bleu
237
+ value: 50.1
238
+ - task:
239
+ name: Translation ukr-srp_Cyrl
240
+ type: translation
241
+ args: ukr-srp_Cyrl
242
+ dataset:
243
+ name: tatoeba-test-v2021-08-07
244
+ type: tatoeba_mt
245
+ args: ukr-srp_Cyrl
246
+ metrics:
247
+ - name: BLEU
248
+ type: bleu
249
+ value: 54.7
250
+ - task:
251
+ name: Translation ukr-srp_Latn
252
+ type: translation
253
+ args: ukr-srp_Latn
254
+ dataset:
255
+ name: tatoeba-test-v2021-08-07
256
+ type: tatoeba_mt
257
+ args: ukr-srp_Latn
258
+ metrics:
259
+ - name: BLEU
260
+ type: bleu
261
+ value: 53.4
262
+ ---
263
+ # opus-mt-tc-big-zle-zls
264
+
265
+ Neural machine translation model for translating from East Slavic languages (zle) to South Slavic languages (zls).
266
+
267
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
268
+
269
+ * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
270
+
271
+ ```
272
+ @inproceedings{tiedemann-thottingal-2020-opus,
273
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
274
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
275
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
276
+ month = nov,
277
+ year = "2020",
278
+ address = "Lisboa, Portugal",
279
+ publisher = "European Association for Machine Translation",
280
+ url = "https://aclanthology.org/2020.eamt-1.61",
281
+ pages = "479--480",
282
+ }
283
+
284
+ @inproceedings{tiedemann-2020-tatoeba,
285
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
286
+ author = {Tiedemann, J{\"o}rg},
287
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
288
+ month = nov,
289
+ year = "2020",
290
+ address = "Online",
291
+ publisher = "Association for Computational Linguistics",
292
+ url = "https://aclanthology.org/2020.wmt-1.139",
293
+ pages = "1174--1182",
294
+ }
295
+ ```
296
+
297
+ ## Model info
298
+
299
+ * Release: 2022-03-23
300
+ * source language(s): bel rus ukr
301
+ * target language(s): bul hbs hrv slv srp_Cyrl srp_Latn
302
+ * valid target language labels: >>bul<< >>hbs<< >>hrv<< >>slv<< >>srp_Cyrl<< >>srp_Latn<<
303
+ * model: transformer-big
304
+ * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
305
+ * tokenization: SentencePiece (spm32k,spm32k)
306
+ * original model: [opusTCv20210807+bt_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.zip)
307
+ * more information released models: [OPUS-MT zle-zls README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zls/README.md)
308
+ * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)
309
+
310
+ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bul<<`
311
+
312
+ ## Usage
313
+
314
+ A short example code:
315
+
316
+ ```python
317
+ from transformers import MarianMTModel, MarianTokenizer
318
+
319
+ src_text = [
320
+ ">>bul<< Новы каранавірус вельмі заразны.",
321
+ ">>srp_Latn<< Моє ім'я — Саллі."
322
+ ]
323
+
324
+ model_name = "pytorch-models/opus-mt-tc-big-zle-zls"
325
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
326
+ model = MarianMTModel.from_pretrained(model_name)
327
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
328
+
329
+ for t in translated:
330
+ print( tokenizer.decode(t, skip_special_tokens=True) )
331
+
332
+ # expected output:
333
+ # Короната е силно заразна.
334
+ # Zovem se Sali.
335
+ ```
336
+
337
+ You can also use OPUS-MT models with the transformers pipelines, for example:
338
+
339
+ ```python
340
+ from transformers import pipeline
341
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-zls")
342
+ print(pipe(">>bul<< Новы каранавірус вельмі заразны."))
343
+
344
+ # expected output: Короната е силно заразна.
345
+ ```
346
+
347
+ ## Benchmarks
348
+
349
+ * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.test.txt)
350
+ * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt)
351
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
352
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
353
+
354
+ | langpair | testset | chr-F | BLEU | #sent | #words |
355
+ |----------|---------|-------|-------|-------|--------|
356
+ | rus-bul | tatoeba-test-v2021-08-07 | 0.71515 | 53.7 | 1247 | 8272 |
357
+ | rus-hbs | tatoeba-test-v2021-08-07 | 0.69192 | 49.4 | 2500 | 14736 |
358
+ | rus-slv | tatoeba-test-v2021-08-07 | 0.38051 | 21.5 | 657 | 3969 |
359
+ | rus-srp_Cyrl | tatoeba-test-v2021-08-07 | 0.66622 | 46.1 | 881 | 5407 |
360
+ | rus-srp_Latn | tatoeba-test-v2021-08-07 | 0.70990 | 51.7 | 1483 | 8552 |
361
+ | ukr-bul | tatoeba-test-v2021-08-07 | 0.77283 | 61.3 | 1020 | 5181 |
362
+ | ukr-hbs | tatoeba-test-v2021-08-07 | 0.69401 | 52.1 | 942 | 5130 |
363
+ | ukr-hrv | tatoeba-test-v2021-08-07 | 0.67202 | 50.1 | 389 | 2302 |
364
+ | ukr-srp_Cyrl | tatoeba-test-v2021-08-07 | 0.70064 | 54.7 | 205 | 1112 |
365
+ | ukr-srp_Latn | tatoeba-test-v2021-08-07 | 0.72405 | 53.4 | 348 | 1716 |
366
+ | bel-bul | flores101-devtest | 0.49528 | 16.1 | 1012 | 24700 |
367
+ | bel-hrv | flores101-devtest | 0.46308 | 12.4 | 1012 | 22423 |
368
+ | bel-mkd | flores101-devtest | 0.48608 | 13.5 | 1012 | 24314 |
369
+ | bel-slv | flores101-devtest | 0.44452 | 12.2 | 1012 | 23425 |
370
+ | bel-srp_Cyrl | flores101-devtest | 0.44424 | 12.6 | 1012 | 23456 |
371
+ | rus-bul | flores101-devtest | 0.58653 | 28.9 | 1012 | 24700 |
372
+ | rus-hrv | flores101-devtest | 0.53494 | 23.2 | 1012 | 22423 |
373
+ | rus-mkd | flores101-devtest | 0.55184 | 24.3 | 1012 | 24314 |
374
+ | rus-slv | flores101-devtest | 0.52201 | 23.1 | 1012 | 23425 |
375
+ | rus-srp_Cyrl | flores101-devtest | 0.53038 | 24.1 | 1012 | 23456 |
376
+ | ukr-bul | flores101-devtest | 0.59625 | 30.8 | 1012 | 24700 |
377
+ | ukr-hrv | flores101-devtest | 0.54530 | 24.6 | 1012 | 22423 |
378
+ | ukr-mkd | flores101-devtest | 0.56822 | 26.2 | 1012 | 24314 |
379
+ | ukr-slv | flores101-devtest | 0.53092 | 24.2 | 1012 | 23425 |
380
+ | ukr-srp_Cyrl | flores101-devtest | 0.54618 | 26.2 | 1012 | 23456 |
381
+
382
+ ## Acknowledgements
383
+
384
+ The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
385
+
386
+ ## Model conversion info
387
+
388
+ * transformers version: 4.16.2
389
+ * OPUS-MT git hash: 1bdabf7
390
+ * port time: Thu Mar 24 00:46:26 EET 2022
391
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ bel-bul flores101-dev 0.49247 15.7 997 23520
2
+ bel-hrv flores101-dev 0.46000 11.9 997 21567
3
+ bel-mkd flores101-dev 0.47774 12.8 997 23159
4
+ bel-slv flores101-dev 0.44985 12.5 997 22448
5
+ bel-srp_Cyrl flores101-dev 0.44253 11.8 997 22384
6
+ rus-bul flores101-dev 0.57899 27.7 997 23520
7
+ rus-hrv flores101-dev 0.53388 23.0 997 21567
8
+ rus-mkd flores101-dev 0.54919 23.6 997 23159
9
+ rus-slv flores101-dev 0.53010 24.3 997 22448
10
+ rus-srp_Cyrl flores101-dev 0.53167 24.1 997 22384
11
+ bel-bul flores101-devtest 0.49528 16.1 1012 24700
12
+ bel-hrv flores101-devtest 0.46308 12.4 1012 22423
13
+ bel-mkd flores101-devtest 0.48608 13.5 1012 24314
14
+ bel-slv flores101-devtest 0.44452 12.2 1012 23425
15
+ bel-srp_Cyrl flores101-devtest 0.44424 12.6 1012 23456
16
+ rus-bul flores101-devtest 0.58653 28.9 1012 24700
17
+ rus-hrv flores101-devtest 0.53494 23.2 1012 22423
18
+ rus-mkd flores101-devtest 0.55184 24.3 1012 24314
19
+ rus-slv flores101-devtest 0.52201 23.1 1012 23425
20
+ rus-srp_Cyrl flores101-devtest 0.53038 24.1 1012 23456
21
+ ukr-bul flores101-devtest 0.59625 30.8 1012 24700
22
+ ukr-hrv flores101-devtest 0.54530 24.6 1012 22423
23
+ ukr-mkd flores101-devtest 0.56822 26.2 1012 24314
24
+ ukr-slv flores101-devtest 0.53092 24.2 1012 23425
25
+ ukr-srp_Cyrl flores101-devtest 0.54618 26.2 1012 23456
26
+ ukr-bul flores101-dev 0.59416 30.6 997 23520
27
+ ukr-hrv flores101-dev 0.53975 24.3 997 21567
28
+ ukr-mkd flores101-dev 0.55488 24.9 997 23159
29
+ ukr-slv flores101-dev 0.53045 24.5 997 22448
30
+ ukr-srp_Cyrl flores101-dev 0.54306 25.8 997 22384
31
+ rus-slv tatoeba-test-v2020-07-28 0.50977 34.4 378 2135
32
+ ukr-hbs tatoeba-test-v2020-07-28 0.69419 52.1 941 5128
33
+ ukr-slv tatoeba-test-v2020-07-28 0.29535 14.7 848 3823
34
+ ukr-srp_Cyrl tatoeba-test-v2020-07-28 0.70152 54.7 204 1110
35
+ rus-slv tatoeba-test-v2021-03-30 0.50384 33.9 447 2547
36
+ ukr-bul tatoeba-test-v2021-03-30 0.77339 61.4 1022 5192
37
+ ukr-hbs tatoeba-test-v2021-03-30 0.69451 52.1 953 5194
38
+ ukr-hrv tatoeba-test-v2021-03-30 0.67148 49.9 393 2330
39
+ ukr-slv tatoeba-test-v2021-03-30 0.29159 14.2 916 4141
40
+ ukr-srp_Cyrl tatoeba-test-v2021-03-30 0.70373 54.9 209 1131
41
+ ukr-srp_Latn tatoeba-test-v2021-03-30 0.72447 53.5 351 1733
42
+ rus-bul tatoeba-test-v2021-08-07 0.71515 53.7 1247 8272
43
+ rus-hbs tatoeba-test-v2021-08-07 0.69192 49.4 2500 14736
44
+ rus-slv tatoeba-test-v2021-08-07 0.38051 21.5 657 3969
45
+ rus-srp_Cyrl tatoeba-test-v2021-08-07 0.66622 46.1 881 5407
46
+ rus-srp_Latn tatoeba-test-v2021-08-07 0.70990 51.7 1483 8552
47
+ ukr-bul tatoeba-test-v2021-08-07 0.77283 61.3 1020 5181
48
+ ukr-hbs tatoeba-test-v2021-08-07 0.69401 52.1 942 5130
49
+ ukr-hrv tatoeba-test-v2021-08-07 0.67202 50.1 389 2302
50
+ ukr-slv tatoeba-test-v2021-08-07 0.28906 14.6 915 4267
51
+ ukr-srp_Cyrl tatoeba-test-v2021-08-07 0.70064 54.7 205 1112
52
+ ukr-srp_Latn tatoeba-test-v2021-08-07 0.72405 53.4 348 1716
benchmark_translations.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a45800559823cfaa0dd41a5deb8dd055b6144f5688b38f81de51b66c5557d22
3
+ size 6486635
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "relu",
4
+ "architectures": [
5
+ "MarianMTModel"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "bad_words_ids": [
9
+ [
10
+ 57829
11
+ ]
12
+ ],
13
+ "bos_token_id": 0,
14
+ "classifier_dropout": 0.0,
15
+ "d_model": 1024,
16
+ "decoder_attention_heads": 16,
17
+ "decoder_ffn_dim": 4096,
18
+ "decoder_layerdrop": 0.0,
19
+ "decoder_layers": 6,
20
+ "decoder_start_token_id": 57829,
21
+ "decoder_vocab_size": 57830,
22
+ "dropout": 0.1,
23
+ "encoder_attention_heads": 16,
24
+ "encoder_ffn_dim": 4096,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 6,
27
+ "eos_token_id": 11317,
28
+ "forced_eos_token_id": 11317,
29
+ "init_std": 0.02,
30
+ "is_encoder_decoder": true,
31
+ "max_length": 512,
32
+ "max_position_embeddings": 1024,
33
+ "model_type": "marian",
34
+ "normalize_embedding": false,
35
+ "num_beams": 4,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 57829,
38
+ "scale_embedding": true,
39
+ "share_encoder_decoder_embeddings": true,
40
+ "static_position_embeddings": true,
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.18.0.dev0",
43
+ "use_cache": true,
44
+ "vocab_size": 57830
45
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3474e85e43ceb3c5f52d2aceeed6979bfd38340200073e31c724a713730ab45e
3
+ size 589793795
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65b06b918b96b013d576aec6060f5ff70b65c38b986da107c06f3006638e07fc
3
+ size 1008545
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae10d5dc2d9be8bf00def389730a37432fbc27c34b5404ee5fd547623778ef8e
3
+ size 902152
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "zle", "target_lang": "zls", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20210807+bt_transformer-big_2022-03-23/zle-zls", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff