Initial commit
Browse files- README.md +4 -8
- README.md~ +213 -0
README.md
CHANGED
@@ -146,15 +146,11 @@ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus
|
|
146 |
* Release: 2021-12-08
|
147 |
* source language(s): fin
|
148 |
* target language(s): eng
|
149 |
-
* valid target language labels: >>eng<<
|
150 |
* model: transformer-big (big)
|
151 |
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
|
152 |
* tokenization: SentencePiece (spm32k,spm32k)
|
153 |
* original model: [opusTCv20210807+bt-2021-12-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opusTCv20210807+bt-2021-12-08.zip)
|
154 |
* more information released models: [OPUS-MT fin-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-eng/README.md)
|
155 |
-
* more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)
|
156 |
-
|
157 |
-
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>eng<<`
|
158 |
|
159 |
## Usage
|
160 |
|
@@ -164,8 +160,8 @@ A short example code:
|
|
164 |
from transformers import MarianMTModel, MarianTokenizer
|
165 |
|
166 |
src_text = [
|
167 |
-
"
|
168 |
-
"
|
169 |
]
|
170 |
|
171 |
model_name = "pytorch-models/opus-mt-tc-big-fi-en"
|
@@ -182,7 +178,7 @@ You can also use OPUS-MT models with the transformers pipelines, for example:
|
|
182 |
```python
|
183 |
from transformers import pipeline
|
184 |
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fi-en")
|
185 |
-
print(pipe("
|
186 |
```
|
187 |
|
188 |
## Benchmarks
|
@@ -213,5 +209,5 @@ The work is supported by the [European Language Grid](https://www.european-langu
|
|
213 |
|
214 |
* transformers version: 4.16.2
|
215 |
* OPUS-MT git hash: f084bad
|
216 |
-
* port time: Tue Mar 22 14:
|
217 |
* port machine: LM0-400-22516.local
|
|
|
146 |
* Release: 2021-12-08
|
147 |
* source language(s): fin
|
148 |
* target language(s): eng
|
|
|
149 |
* model: transformer-big (big)
|
150 |
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
|
151 |
* tokenization: SentencePiece (spm32k,spm32k)
|
152 |
* original model: [opusTCv20210807+bt-2021-12-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opusTCv20210807+bt-2021-12-08.zip)
|
153 |
* more information released models: [OPUS-MT fin-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-eng/README.md)
|
|
|
|
|
|
|
154 |
|
155 |
## Usage
|
156 |
|
|
|
160 |
from transformers import MarianMTModel, MarianTokenizer
|
161 |
|
162 |
src_text = [
|
163 |
+
"Kolme kolmanteen on kaksikymmentäseitsemän.",
|
164 |
+
"Heille syntyi poikavauva."
|
165 |
]
|
166 |
|
167 |
model_name = "pytorch-models/opus-mt-tc-big-fi-en"
|
|
|
178 |
```python
|
179 |
from transformers import pipeline
|
180 |
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fi-en")
|
181 |
+
print(pipe("Kolme kolmanteen on kaksikymmentäseitsemän."))
|
182 |
```
|
183 |
|
184 |
## Benchmarks
|
|
|
209 |
|
210 |
* transformers version: 4.16.2
|
211 |
* OPUS-MT git hash: f084bad
|
212 |
+
* port time: Tue Mar 22 14:52:19 EET 2022
|
213 |
* port machine: LM0-400-22516.local
|
README.md~
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- fi
|
5 |
+
|
6 |
+
tags:
|
7 |
+
- translation
|
8 |
+
|
9 |
+
license: cc-by-4.0
|
10 |
+
model-index:
|
11 |
+
- name: opus-mt-tc-big-fi-en
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Translation fin-eng
|
15 |
+
type: translation
|
16 |
+
args: fin-eng
|
17 |
+
dataset:
|
18 |
+
name: flores101-devtest
|
19 |
+
type: flores_101
|
20 |
+
args: fin eng devtest
|
21 |
+
metrics:
|
22 |
+
- name: BLEU
|
23 |
+
type: bleu
|
24 |
+
value: 35.4
|
25 |
+
- task:
|
26 |
+
name: Translation fin-eng
|
27 |
+
type: translation
|
28 |
+
args: fin-eng
|
29 |
+
dataset:
|
30 |
+
name: newsdev2015
|
31 |
+
type: newsdev2015
|
32 |
+
args: fin-eng
|
33 |
+
metrics:
|
34 |
+
- name: BLEU
|
35 |
+
type: bleu
|
36 |
+
value: 28.6
|
37 |
+
- task:
|
38 |
+
name: Translation fin-eng
|
39 |
+
type: translation
|
40 |
+
args: fin-eng
|
41 |
+
dataset:
|
42 |
+
name: tatoeba-test-v2021-08-07
|
43 |
+
type: tatoeba_mt
|
44 |
+
args: fin-eng
|
45 |
+
metrics:
|
46 |
+
- name: BLEU
|
47 |
+
type: bleu
|
48 |
+
value: 57.4
|
49 |
+
- task:
|
50 |
+
name: Translation fin-eng
|
51 |
+
type: translation
|
52 |
+
args: fin-eng
|
53 |
+
dataset:
|
54 |
+
name: newstest2015
|
55 |
+
type: wmt-2015-news
|
56 |
+
args: fin-eng
|
57 |
+
metrics:
|
58 |
+
- name: BLEU
|
59 |
+
type: bleu
|
60 |
+
value: 29.9
|
61 |
+
- task:
|
62 |
+
name: Translation fin-eng
|
63 |
+
type: translation
|
64 |
+
args: fin-eng
|
65 |
+
dataset:
|
66 |
+
name: newstest2016
|
67 |
+
type: wmt-2016-news
|
68 |
+
args: fin-eng
|
69 |
+
metrics:
|
70 |
+
- name: BLEU
|
71 |
+
type: bleu
|
72 |
+
value: 34.3
|
73 |
+
- task:
|
74 |
+
name: Translation fin-eng
|
75 |
+
type: translation
|
76 |
+
args: fin-eng
|
77 |
+
dataset:
|
78 |
+
name: newstest2017
|
79 |
+
type: wmt-2017-news
|
80 |
+
args: fin-eng
|
81 |
+
metrics:
|
82 |
+
- name: BLEU
|
83 |
+
type: bleu
|
84 |
+
value: 37.3
|
85 |
+
- task:
|
86 |
+
name: Translation fin-eng
|
87 |
+
type: translation
|
88 |
+
args: fin-eng
|
89 |
+
dataset:
|
90 |
+
name: newstest2018
|
91 |
+
type: wmt-2018-news
|
92 |
+
args: fin-eng
|
93 |
+
metrics:
|
94 |
+
- name: BLEU
|
95 |
+
type: bleu
|
96 |
+
value: 27.1
|
97 |
+
- task:
|
98 |
+
name: Translation fin-eng
|
99 |
+
type: translation
|
100 |
+
args: fin-eng
|
101 |
+
dataset:
|
102 |
+
name: newstest2019
|
103 |
+
type: wmt-2019-news
|
104 |
+
args: fin-eng
|
105 |
+
metrics:
|
106 |
+
- name: BLEU
|
107 |
+
type: bleu
|
108 |
+
value: 32.7
|
109 |
+
---
|
110 |
+
# opus-mt-tc-big-fi-en
|
111 |
+
|
112 |
+
Neural machine translation model for translating from Finnish (fi) to English (en).
|
113 |
+
|
114 |
+
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
|
115 |
+
|
116 |
+
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
|
117 |
+
|
118 |
+
```
|
119 |
+
@inproceedings{tiedemann-thottingal-2020-opus,
|
120 |
+
title = "{OPUS}-{MT} {--} Building open translation services for the World",
|
121 |
+
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
|
122 |
+
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
|
123 |
+
month = nov,
|
124 |
+
year = "2020",
|
125 |
+
address = "Lisboa, Portugal",
|
126 |
+
publisher = "European Association for Machine Translation",
|
127 |
+
url = "https://aclanthology.org/2020.eamt-1.61",
|
128 |
+
pages = "479--480",
|
129 |
+
}
|
130 |
+
|
131 |
+
@inproceedings{tiedemann-2020-tatoeba,
|
132 |
+
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
|
133 |
+
author = {Tiedemann, J{\"o}rg},
|
134 |
+
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
|
135 |
+
month = nov,
|
136 |
+
year = "2020",
|
137 |
+
address = "Online",
|
138 |
+
publisher = "Association for Computational Linguistics",
|
139 |
+
url = "https://aclanthology.org/2020.wmt-1.139",
|
140 |
+
pages = "1174--1182",
|
141 |
+
}
|
142 |
+
```
|
143 |
+
|
144 |
+
## Model info
|
145 |
+
|
146 |
+
* Release: 2021-12-08
|
147 |
+
* source language(s): fin
|
148 |
+
* target language(s): eng
|
149 |
+
* model: transformer-big (big)
|
150 |
+
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
|
151 |
+
* tokenization: SentencePiece (spm32k,spm32k)
|
152 |
+
* original model: [opusTCv20210807+bt-2021-12-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opusTCv20210807+bt-2021-12-08.zip)
|
153 |
+
* more information released models: [OPUS-MT fin-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-eng/README.md)
|
154 |
+
|
155 |
+
## Usage
|
156 |
+
|
157 |
+
A short example code:
|
158 |
+
|
159 |
+
```python
|
160 |
+
from transformers import MarianMTModel, MarianTokenizer
|
161 |
+
|
162 |
+
src_text = [
|
163 |
+
"Replace this with text in an accepted source language.",
|
164 |
+
"This is the second sentence."
|
165 |
+
]
|
166 |
+
|
167 |
+
model_name = "pytorch-models/opus-mt-tc-big-fi-en"
|
168 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
169 |
+
model = MarianMTModel.from_pretrained(model_name)
|
170 |
+
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
|
171 |
+
|
172 |
+
for t in translated:
|
173 |
+
print( tokenizer.decode(t, skip_special_tokens=True) )
|
174 |
+
```
|
175 |
+
|
176 |
+
You can also use OPUS-MT models with the transformers pipelines, for example:
|
177 |
+
|
178 |
+
```python
|
179 |
+
from transformers import pipeline
|
180 |
+
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fi-en")
|
181 |
+
print(pipe("Replace this with text in an accepted source language."))
|
182 |
+
```
|
183 |
+
|
184 |
+
## Benchmarks
|
185 |
+
|
186 |
+
* test set translations: [opusTCv20210807+bt-2021-12-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opusTCv20210807+bt-2021-12-08.test.txt)
|
187 |
+
* test set scores: [opusTCv20210807+bt-2021-12-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opusTCv20210807+bt-2021-12-08.eval.txt)
|
188 |
+
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
|
189 |
+
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
|
190 |
+
|
191 |
+
| langpair | testset | chr-F | BLEU | #sent | #words |
|
192 |
+
|----------|---------|-------|-------|-------|--------|
|
193 |
+
| fin-eng | tatoeba-test-v2021-08-07 | 0.72298 | 57.4 | 10690 | 80552 |
|
194 |
+
| fin-eng | flores101-devtest | 0.62521 | 35.4 | 1012 | 24721 |
|
195 |
+
| fin-eng | newsdev2015 | 0.56232 | 28.6 | 1500 | 32012 |
|
196 |
+
| fin-eng | newstest2015 | 0.57469 | 29.9 | 1370 | 27270 |
|
197 |
+
| fin-eng | newstest2016 | 0.60715 | 34.3 | 3000 | 62945 |
|
198 |
+
| fin-eng | newstest2017 | 0.63050 | 37.3 | 3002 | 61846 |
|
199 |
+
| fin-eng | newstest2018 | 0.54199 | 27.1 | 3000 | 62325 |
|
200 |
+
| fin-eng | newstest2019 | 0.59620 | 32.7 | 1996 | 36215 |
|
201 |
+
| fin-eng | newstestB2016 | 0.55472 | 27.9 | 3000 | 62945 |
|
202 |
+
| fin-eng | newstestB2017 | 0.58847 | 31.1 | 3002 | 61846 |
|
203 |
+
|
204 |
+
## Acknowledgements
|
205 |
+
|
206 |
+
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
|
207 |
+
|
208 |
+
## Model conversion info
|
209 |
+
|
210 |
+
* transformers version: 4.16.2
|
211 |
+
* OPUS-MT git hash: f084bad
|
212 |
+
* port time: Tue Mar 22 14:52:19 EET 2022
|
213 |
+
* port machine: LM0-400-22516.local
|