Upload test.py
Browse files
test.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from numpy import asarray
|
5 |
+
import tensorflow as tf
|
6 |
+
from tensorflow import keras
|
7 |
+
|
8 |
+
from tensorflow.keras.preprocessing import image_dataset_from_directory
|
9 |
+
|
10 |
+
|
11 |
+
input = sys.argv[1]
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
path = r"archive/Train/Train"
|
16 |
+
train = image_dataset_from_directory(path, batch_size=32,
|
17 |
+
image_size=(256,256),shuffle=True)
|
18 |
+
|
19 |
+
#pathx=r"C:\Projects\Junk\model.keras"
|
20 |
+
|
21 |
+
class_labels = train.class_names
|
22 |
+
|
23 |
+
#model = keras.models.load_model("model.h5")
|
24 |
+
model = keras.models.load_model('model.h5', custom_objects=None, compile=True, safe_mode=True)
|
25 |
+
#print(model.summary())
|
26 |
+
|
27 |
+
#imgs = Image.open('basil.jpg')
|
28 |
+
|
29 |
+
def calling(img_path):
|
30 |
+
imgs = Image.open('basil.jpg')
|
31 |
+
predicted_class, confidence = Prediction(model, asarray(imgs))
|
32 |
+
return predicted_class
|
33 |
+
|
34 |
+
|
35 |
+
#print('hello')
|
36 |
+
def Prediction(model, img):
|
37 |
+
img_array = tf.keras.preprocessing.image.img_to_array((img))
|
38 |
+
img_array = tf.expand_dims(img_array, 0) # create a batch
|
39 |
+
|
40 |
+
predictions = model.predict(img_array)
|
41 |
+
|
42 |
+
predicted_class = class_labels[np.argmax(predictions[0])]
|
43 |
+
confidence = round(100 * (np.max(predictions[0])), 2)
|
44 |
+
|
45 |
+
return predicted_class, confidence
|
46 |
+
#return predicted_class
|
47 |
+
#return predictions
|
48 |
+
|
49 |
+
op = calling('basil.jpg')
|
50 |
+
print(op)
|
51 |
+
|
52 |
+
sys.stdout.flush()
|
53 |
+
#predicted_class , confidence = Prediction(model,asarray(imgs))
|
54 |
+
#pred = Prediction(model,asarray(imgs))
|
55 |
+
#print(predicted_class)
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
#print('hello2')
|